روش جدید هماهنگی بهینه رلههای دیستانس و اضافه جریان جهتی با استفاده از الگوریتم GA

چکیدہ	اطلاعات مقاله
	دریافت مقاله: ۱۳۹۴/۰۸/۰۹
هماهنگی مناسب بین رلههای دیستانس و اضافه جریان در سیستم قدرت یکی از	پذیرش مقاله: ۱۳۹۴/۱۰/۲۰
مهـمتـرین مسـائل بـرای امنیـت و پایـداری سیسـتم اسـت. در ایـن مقالـه روش جدیـدی	
برای هماهنگی بهینـه رلـههـای دیسـتانس و رلـههـای اضـافه جریـان جهتـی بـا در نظـر	واژگان کلیدی:
گرفتن واحد عملکرد آنی و مشخصهه ای مختلف بـرای تمـام رلـهـای اضـافه جریـان بـه	ھماھنگی بھینہ،
کم ک الگوریتم بهینه سازی ژنتیک ارائه می شود. استفاده از واحد عملکرد آنی با	رله اضافه جريان جهتي،
تغییر در قیود هماهنگی امکان تنظیم زمان عملکرد ناحیه دوم ركهای دیستانس با	رله دیستانس،
مقدار ثابت و معمـولی را فـراهم مـیکنـد. روش پیشـنهادی بـر روی شـبکههـای نمونـه ۸	واحد عملکرد آني ،
باسه و ۳۰ باسه اجرا شده و نتایج شبیهسازی، سودمندی این روش را در کاهش	الگوريتم ژنتيک.
زمان عملکرد سیستم حفاظت نشان می دهد.	

زهرا مروج^{۱.*}، مجتبى قرجه لو^۲، كاظم مظلومى^۳

۱- مقدمه

خطوط انتقال و فوق توزیع نقش حیاتی در انتقال انرژی از نیروگاهها به سیستمهای توزیع دارند. رلههای دیستانس و رلههای اضافه جریان جهتی نقش مهمی را در بر طرف کردن خطا در این خطوط به عهده دارند. رلههای دیستانس در این سیستمها به عنوان حفاظت اصلی یا حفاظت پشتیبان به کار میرود، درحالیکه رلههای اضافه جریان پشتیبان به کار میرود، درحالیکه رلههای اضافه جریان جهتی (TOCR) معمولاً در سیستم انتقال به عنوان حفاظت پشتیبان رله دیستانس و در سیستم فوق توزیع به عنوان حفاظت اصلی یا حفاظت پشتیبان استفاده میشوند[۱]. برای دست یافتن به یک حفاظت سریع و گزینشی در سیستم انتقال، با استفاده از رلههای دیستانس و اضافه جریان باید این دو نوع رله به طور صحیح با هم هماهنگ شوند.

- هماهنگی مستقل از هم رلههای دیستانس و اضافه جریان زمان معکوس - هماهنگی همزمان این دو رله - هماهنگی همزمان این دو رله با در نظر گرفتن DOCR زمان ثابت.

تاكنون روشهای مختلفی برای هماهنگی رلههای

دیستانس و رلههای اضافه جریان جهتی (D&DOCR^۴)

ارائه شده است[۱–۱۳]. برای هماهنگی رلههای دیستانس

و اضافه جریان جهتی دستهای از پارامترها شامل زمان

عملکرد ناحیه دوم رله های دیستانس (Tz2) ، جریان تنظیم

(Ipi) و ضریب تنظیم زمانی(TMS^۵) رلههای اضافه جریان

باید تعیین شوند. در [۲]، مساله هماهنگی D&DOCR در

سه رویه حفاظتی زیر حل شده است:

^{*.} پست الكترونيك نويسنده مسئول: zmoravej@semnan.ac.ir

۱. دانشیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان

۲. دانشجوی کارشناسی ارشد، دانشکده مهندسی برق، دانشگاه سمنان

۳. استادیار، دانشکده مهندسی، گروه برق، دانشگاه زنجان

³ Directional OverCurrent Relay

⁴ Distance and Directional OverCurrent Relay

⁵ Time Multiplier Setting

در [۳]یک الگوریتم تکاملی برای حل مساله هماهنگی D&DOCR پیشنهاد شده و زمان عملکرد نواحی دوم و سوم رلههای دیستانس و همچنین TMS و I_{pi} رلههای اضافه جریان به عنوان متغیرهای بهینهسازی در نظر گرفتهشدهاند.

در [۴] مساله هماهنگی D&DOCR با روش ^۲P با در نظر گرفتن Tz2 و TMS به عنوان متغیرهای بهینهسازی حل شده است. در این مرجع تنظیمات بهینه برای رلههای دیستانس با در نظر گرفتن مقادیر مساوی برای زمان عملكرد ناحيه دوم تمام رلههاى ديستانس تعيين شده است. در [۵-۸] الگوریتم ژنتیک برای حل مساله بهینهسازی D&DOCR با معرفی یک تابع هدف جدید برای این مساله اعمال شده است. در [۵و۶] TMSهای بهینه برای رلههای اضافه جریان تعیین شدهاند، درحالی که و T_{Z2} مقادیر معلوم فرض شدهاند. در [$0 \in \Lambda$] انتخاب I_{pi} بهترین مشخصه از میان مشخصات عملکردی استاندارد رلههای اضافه جریان با استفاده از الگوریتم ژنتیک به عنوان ایده جدید در نظر گرفته شده است. گذشته از این در [۸] برای هر رله دیستانس مجهول فرض شده است در T_{Z2} حالی که I_{pi} برای هر رله اضافه جریان به عنوان مقادیر معلوم فرض شدهاند.

در [$Pertext{Poly} T_{z2}$ [$Pertext{Poly} T_{z2}$ ($Pertext{Poly} T_{z2}$) ($Pertext{Poly} T_{z2}$ ($Pertext{Poly} T_{z2}$) ($Pertext{Poly} T_{z2}$ ($Pertext{Poly} T_{z2}$) ($Pertext{$

در [۱۲]، الگوریتم PSO تقاطع جاسازی شده چندگانه^۹ برای تعیین تنظیمات بهینه D&DOCR با در نظر گرفتن فاصله زمانی بین زمان عملکرد رله اضافه جریان پشتیبان و T₂₂ زمان عملکرد ناحیه دوم رله دیستانس اصلی در تابع هدف استفاده شده است.

در [۱۳] هماهنگی رلههای دیستانس و اضافه جریان با در نظر گرفتن ساختارهای مختلف شبکه ناشی از خروج خطوط و منابع انجام شده است. وارد شدن ساختارهای مختلف شبکه در مساله هماهنگی D&DOCR، تعداد قیود مساله را به شدت افزایش میدهد. در این مرجع روش های مختلفی برای کاهش این قیود ارائه شده است.

در [۱] فرمول بندی جدیدی برای هماهنگی رلههای دیستانس و اضافه جریان با در نظر گرفتن حفاظت پایلوت انجام شده است. در این مرجع قیود هماهنگی برای رلههای دیستانس اصلی و اضافه جریان پشتیبان به ازای خطا در انتهای خط منظور شده است. این نحوه هماهنگی بر خلاف مراجع گذشته می باشد که در آنها قیود هماهنگی به ازای خطا در انتهای ناحیه اول رله دیستانس منظور شده است. رله دیستانس به دلیل محدودیت هماهنگی بین رله در مقالاتی که در بالا ذکر شد، زمان عملکرد ناحیه دوم رله دیستانس به دلیل محدودیت هماهنگی بین رله بین رله اضافه جریان اصلی و رله دیستانس پشتیبان به عنوان متغیر مساله هماهنگی بهینه فرض شده است. با اعمال محدودیتهای هماهنگی در الگوریتم زمان عملکرد ناحیه دوم رلههای دیستانس بزرگتر از زمان عملکرد

در این مقاله روش جدیدی مبتی بر الگوریتم GA برای هماهنگی رلههای دیستانس و اضافه جریان جهتی ارائه میشود که با استفاده از واحد واحد عملکرد آنی برای رله اضافه جریان جهتی، سرعت عملکرد این رلهها برای خطاهای نزدیک افزایش مییابد و همچنین یک دسته از قیود هماهنگی DOCR حذف میشود، که با حذف این

⁸ Particle Swarm Optimization

⁹ Multiple Embedded Crossover PSO

⁶ Linear Programming

⁷ Genetic Algorithm

قیود و تنظیم زمان عملکرد ناحیه دوم رله دیستانس با مقدار معمولی پاسخهای مطلوبی برای مساله هماهنگی D&DOCR در شبکههای نمونه ۸ باسه و ۳۰ باسه بدست آمده است.

۲- بیان مساله هماهنگیDOCR

با وجود رلههای دیستانس مدرن، رلههای اضافه جریان جهتی از دید اقتصادی و فنی بهترین انتخاب برای پشتیبان محلی رلههای دیستانس هستند. اما این موجب پیچیدهتر شدن هماهنگی این رلهها با هم می شود. جهت هماهنگی بهینه موارد زیر باید انجام شوند:

- هماهنگی رلههای اضافه جریان- اضافه جریان
 - 🔹 هماهنگی رلههای دیستانس دیستانس
 - 🔹 هماهنگی رلههای دیستانس اضافه جریان

۲-۱- هماهنگی اضافه جریان – اضافه جریان مساله هماهنگی بهینه رلههای اضافه جریان در شبکه قدرت را می توان به عنوان یک مساله بهینه سازی بیان کرد. متغیرهای این مساله می توانند خطی یا غیر خطی باشند. این مساله به طور کلی به صورت زیر تعریف می شود.

$$OF = \min \sum_{i=1}^{n} T_i \tag{1}$$

Subject to: $T_b - T_m \ge CTI$ (7)

$$T_{i} = f (TMS, I_{pi}, I_{sc})$$
(r)

$$TMS_{\min} \leq TMS \leq TMS_{\max}$$
 (*)

$$I_{pi\,(\min)} \le I_{pi} \le I_{pi\,(\max)} \tag{(\Delta)}$$

در روابط فوق n تعداد رلهها و T_i زمان عملکرد رله أام که تابعی از پارامترهای تنظیم TMS و I_{pi} و جریان اتصال کوتاه عبوری از رله میباشند. همچنین T_b زمان عملکرد رله اصلی در نقاط بحرانی خطا می باشند. رابطه (۲)، قید هماهنگی دو رله اصلی و پشتیبان برای خطا در دو نقطه بحرانی ابتدای و انتهای خط

اصلی است. ^۱ CTI فاصله زمانی هماهنگی است که معمولاً بین ۲/۰تا ۲/۵ ثانیه انتخاب می شود. هدف از حل مساله فوق حداقل کردن تابع هدف به صورتی است که قیود هماهنگی برای همه جفت رلههای اصلی و پشتیبان و قیود پارامترهای تنظیم (رابطه ۴و۵) برای همه رلههای اضافه جریان ارضا شوند.

۲–۲– هماهنگی دیستانس– دیستانس

منظور از هماهنگی رلههای دیستانس تعیین امپدانسهای تنظیم نواحی سهگانه و زمان عملکرد مربوط به هر یک از نواحی است، به گونهای که این نواحی درصد بیشتری از خط جلوی رله و خطوط مجاور را تحت پوشش حفاظتی خود قرار دهند. با این شرط که هیچگونه تداخلی در عملکرد نواحی رله اصلی و پشتیبان پیش نیاید. قبل از شروع برای هماهنگی بهینه رلههای دیستانس و رلههای اضافه جریان جهتی باید هماهنگی رلههای دیستانس در تمام خطوط انجام شود. در این مقاله برای شبکه نمونه تنظیمات رلههای دیستانس با استفاده از روشهای ارائه شده در مراجع [۱۹ و ۱۵] انجامشده است. در مرجع [۱۴] امپدانس تنظیم ناحیه سوم و در مرجع [۱۵] امپدانس تنظیم ناحیه دوم رلههای دیستانس با در نظر گرفتن عدم قطعیت در ساختارشبکه (ورود و خروج) و شرایط بهرهبرداری سیستم محاسبه شده است.

۲-۳- همـاهنگی دیسـتانس - اضـافه جریـان جهتی

زمانی که در رویه حفاظتی رلههای دیستانس و اضافه جریان با هم ترکیب میشوند، محدودیتهای هماهنگی (۶) و (۷) در نقاط بحرانی F4 ابتدای ناحیه دوم رله دیستانس اصلی و F5 انتهای رله دیستانس پشتیبان نشان داده شده در شکل ۱ به مساله هماهنگی رلههای اضافه جریان اضافه میشود.

¹⁰ Coordination Time Interval

مجله مدل سازی در مهندسی

$$T_{Z2(backup)} - T_{oc(main)} \ge CTI' \tag{(6)}$$

$$T_{oc(backup)} - T_{Z2(main)} \ge CTI' \tag{Y}$$

در روابط فوق (Tz2(main) و Tz2(backup) به ترتیب زمان عملکرد ناحیه دوم رلههای دیستانس اصلی و پشتیبان، Toc(backup) و Toc(main) نیز به ترتیب زمان عملکرد رلههای اضافه جریان جهتی اصلی و پشتیبان میباشند. با در نظر گرفتن هماهنگی همزمان رلههای اضافه جریان و دیستانس معداد محدودیتهای هماهنگی سه برابر بیشتر از تعداد محدودیتهای هماهنگی مساله هماهنگی رلههای اضافه جریان خواهد شد. در این شرایط فاصله زمانی هماهنگی (CTI) جدیدی بین رلههای دیستانس و اضافه جریان باید تعریف میشود که میتوان آن را برابر با CTI استفاده شده در هماهنگی جفت رلههای اضافه جریان منظور کرد.

۳- روش پیشنهادی

در این مقاله از ترکیب واحد عملکرد آنی و رله اضافه جریان به عنوان پشتیبان حفاظت دیستانس استفاده شده است. واحد عملکرد آنی درمواردی همراه رله اضافه جریان استفاده میشود که لازم باشد خطاهای نزدیک رله اضافه جریان آنی قطع شوند. واحدهای عملکرد آنی تنظیم زمانی ندارند و فقط با یک جریان معین تنظیم میشوند که به محض عبور جریان بیشتر از این جریان، رله به صورت آنی عمل می کند. معیارهای تنظیم این رلهها به محل قرار گرفتن و نوع المانهای سیستم تحت کنترل بستگی دارد.

تنظیمات واحد عملکرد آنی برای خطوط بین پستها، خطوط توزیع و ترانسفورماتورها به صورت زیر است: الف) خطوط بین پستها : تنظیمات رله عملکرد آنی برای ۱۲۵ درصد جریان موثر متقارن، خطای ماکزیمم پست بعدی انجام می شود.

ب) خطوط توزیع : برای تنظیم می توان یکی از دو مقدار
 ۵۰ درصد ماکزیمم جریان اتصال کوتاه در نقطه اتصال CT
 رله و بین ۶ تا ۱۰ برابر بار نامی خط استفاده کرد.

ج) ترانسفورماتورها : برای رله طرف فشار قوی بین ۱۲۵ درصد تا ۱۵۰ درصد جریان اتصال کوتاه موجود در باس بار فشار ضعیف که به طرف فشار قوی منتقل شده تنظیم می-شود.

در روش پیشنهادی در این مقاله واحد عملکرد آنی با جریانی تنظیم میشود که تا ۲۰ درصد از خط جلوی خط را به صورت آنی تریپ دهد. برای تعیین قیود هماهنگی درمساله هماهنگی D&DOCR لازم که نقاط بحرانی خطا مشخص شوند. نقطه بحرانی نقطهای از خط است که اگر خطایی در این نقطه رخ دهد فاصله زمانی بین زمان عملکرد رله اصلی و پشتیبان حداقل باشد. این نقاط برای روش پیشنهادی در شکل ۲ نشان داده شده اند.

در این شکل فرض شده است که بر روی کلیه باس ها رلههای اضافه جریان و دیستانس نصب شده اند. نقاط F₁ و F₃ به ترتیب ابتدا و انتهای خط اصلی، F₂ انتهای محدوده حفاظتی واحد عملکرد آنی و F₄ انتهای ناحیه اول رله دیستانس اصلی می باشد.

درشکل ۲ نقطه F₅ انتهای ناحیه دوم رله دیستانس پشتیبان است. این نقطه در اکثر مراجع به عنوان نقطه بحرانی انتخاب شده است. این نقطه که انتهای ناحیه دوم رله دیستانس پشتیبان با زمان عملکرد ۳/۰ثانیه می باشد، در ناحیه عملکرد واحد عملکرد آنی رله جریان زیاد اصلی قرار دارد که زمان عملکرد در این ناحیه حدوداً ۰/۰۲ ثانیه فرض شده است. بنابراین در این نقطه فاصله زمانی تقریباً برابر ۳/۰ است دیگر نیازی به چک کردن فاصله زمانی عملکرد در این نقطه و وارد کردن آن در مساله بهینه سازی نیست.

در این مقاله قیود مساله هماهنگی D&DOCR با توجه به شکل ۲ به صورت زیر تعریف میشود.

$$t_b(F_1) - 0.02 \ge CTI \tag{A}$$

$$t_b(F_2) - t_m(F_2) \ge CTI \tag{9}$$

$$t_b(F_3) - t_m(F_3) \ge CTI \tag{(1)}$$

$$t_b(F_4) - 0.3 \ge CTI' \tag{11}$$

در روابط فوق $t_m(F_i)$ و $t_m(F_i)$ زمان عملکرد رلههای اضافه جریان اصلی و پشتیبان به ازای خطا در نقطه بحرانی F_i (i=1,2,3,4) میباشند. در رابطه (۸) عدد ۰/۰۲ مربوط به زمان عملکرد واحد عملکرد آنی رله اضافه جریان اصلی و در رابطه (۱۱) عدد 7/ نشان دهنده زمان عملکرد ناحیه دوم رله دیستانس اصلی می باشد. مقادیر CTI و CTI به صورت مساوی و برابر 7/ فرض شده است.

تابع هدف مساله هماهنگی بهینه با مجموع روابط (۱۲) و (۱۲) به صورت رابطه (۱۴) فرمول بندی می شود.

$$OF_{Doc-Doc} = \alpha_{1} \sum_{i}^{n} t_{i}^{2} + \alpha_{2} \sum_{i=1}^{3} \sum_{k_{i}=1}^{P_{i}} \left[\Delta t_{mb} (F_{i}, k_{1}) - \beta (\Delta t_{mb} (F_{i}, k_{1}) - |\Delta t_{mb} (F_{i}, k_{1})|) \right]^{2}$$
(17)

$$OF_{Dis-Doc} = \alpha_3 \sum_{k_2=1}^{P_2} \left[\Delta t_{mbDISDOC} (F_4, k_2) - \beta (\Delta t_{mbDISDOC} (F_4, k_2) - |\Delta t_{mbDISDOC} (F_4, k_2)|) \right]^2 \quad (1\%)$$

$$OF = OF_{Doc-Doc} + OF_{Dis-Doc}$$

 P_1 در روابط فوق α_i ، α_i ، α_i و β ضرایب وزنی تابع هدف، P_7 تعداد جفت رلههای اصلی و پشتیبان اضافه جریان و P_7 تعداد جفت رلههای دیستانس اصلی و اضافه جریان پشتیبان می باشد. t_i زمان عملکرد رله اصلی آم است. پشتیبان می باشد. t_i زمان عملکرد رله اصلی آم است. فرق به صورت زیر تعریف می شود.

$$\Delta t_{mb}(F_i,k) = t_b(F_i,k) - t_m(F_i,k) - CTI \quad (1\Delta)$$

$$\Delta t_{mbDISDOC}(F_4, k) = t_b(F_4, k) - t_{z2} - CTI' \qquad (19)$$

در روابط فوق $t_m(F_i, k) \in t_m(F_i, k)$ به ترتیب زمان عملکرد رله اصلی و پشتیبان جفت رله الم به ازای خطای سه فاز متقارن در نقاط بحرانی F_i (i=1,2,3,4) و tz2 زمان عملکرد ناحیه دوم رله دیستانس که در این مقاله ثابت و برابر 0.38 تنظیم شده است.

زمان عملکرد رلههای اضافه جریان به ازای جریان خطای Isc از رابطه رایج زیر محاسبه می شود:

$$t = TMS\left(\frac{k}{M^{\circ}} + L\right) \qquad M = \frac{I_{sc}}{I_{pi}}$$
(1Y)

در رابطه فوق M نسبت جریان اتصال کوتاه به جریان تنظیم می باشد، k, α, L مقادیر عددی هستند که برای مشخصه های مختلف رله اضافه جریان در جدول ۱ آورده شده اند.

در این مساله TMS به عنوان متغیر و جریان تنظیم ثابت و ۱/۳ برابر جریان بار در نظر گرفته شدهاند. با توجه به اینکه درسیستم قدرت رلههای اضافه جریان دیجیتال دارای مشخصه متنوعی هستند [۸]، در این روش مشخصه رلهها به عنوان متغیر در مساله بهینه لحاظ شده اند و الگوریتم به عنوان متغیر در مساله بهینه لحاظ شده اند و الگوریتم به عنوان متغیر در مساله بهترین مشخصه برای هماهنگی به گونهای طراحی شده که بهترین مشخصه برای هماهنگی بهینه انتخاب شود. مشخصههای مختلفی که در این مقاله برای تنظیم رلههای اضافه استفاده شده در جدول ۱ آورده شده است.

Number of Characteristic	Type of Characteristic	Standard	K factor	α Factor	L factor
1	Short Time Inverse	AREVA	0.05	0.04	0
2	Standard Inverse	IEC	0.14	0.2	0
3	Very Inverse	IEC	13.5	1	0
4	Extremely Inverse	IEC	80	2	0
5	Long Time Inverse	AREVA	120	1	0
6	Moderately Inverse	ANSI/IEEE	0.0515	0.02	.0114
7	Very Inverse	ANSI/IEEE	19.61	2	0.491
8	Extremely Inverse	ANSI/IEEE	28.2	2	0.1217

جدول ۱- مشخصههای مختلف رله اضافه جریان [۸]

شکل۴- دیاگرام تک خطی شبکه ۸ باسه

۴- نتایج شبیهسازی

۴-۱- شبکه نمونه ۸ باسه

برای پیادهسازی روش پیشنهادی از شبکه نمونه ۸ باسه شکل ۴ استفاده شده است. این شبکه دارای ۷ خط، ۲ ژنراتور و ۲ ترانسفورماتور است. جزئیات شبکه در مرجع [۱۶] میتوان یافت. برای حفاظت خطوط این شبکه ۱۴ رله اضافه جریان و ۱۴ رله دیستانس استفاده شده است. نحوه قرارگیری این رلهها به صورتی است که در هر طرف از خط یک رله دیستانس به همراه رله اضافه جریان جهتی نصب شده است.

با توجه به این که نرمافزار DIGSILENT یکی از قویترین نرمافزارها برای مطالعات شبکه است برای محاسبات پخش با در نظر گرفتن TMS و مشخصه رلههای اضافه جریان به عنوان متغیر، مساله هماهنگی D&DOCR به صورت غیرخطی خواهد بود، که برای یافتن پاسخ بهینه نیاز است از الگوریتمهای بهینهسازی هوشمند استفاده شود. در این مقاله از الگوریتم ژنتیک (GA) برای حل مساله بهینهسازی استفاده شده است.

متغیرهای کلیدی الگوریتم GA کروموزومها می باشند که شامل TMS رلهها و مشخصه تمام رلههای اضافه جریان هستند. در ابتدا تعدادی از این کروموزومها به صورت تصادفی مقداردهی میشوند و جمعیت اولیه را برای ادامه الگوریتم تولید می کنند. ساختار کروموزوم با در نظر گرفتن TMS و مشخصه رلهها در شکل ۳ نشان داده شده است. TMS₁, TMS₂,..., TMS_n دستههای R₁, R₂,..., R_n هستند. زمانی و مشخصه مربوط به رلههای R₁, R₂,..., R_n هستند.

R ₁	R ₂	R ₃	 R _n	R ₁	R ₂	R ₃	 R _n
TMS_1	TMS ₁	TMS ₁	 TMS _n	CHAR ₁	CHAR ₁	CHAR ₁	 CHAR _n

شکل ۳- ساختار کروموزوم

بار و اتصال کوتاه از این نرمافزار استفاده شده است. جریانهای اتصال کوتاه سه فاز متقارن عبوری از رلههای اصلی و پشتیبان را به ازای خطا در نقاط بحرانی در جدول ۸ پیوست مشاهده می کنید. در این جدول Iscm و Iscb به ترتیب جریان اتصال کوتاه عبوری از رلههای اصلی و پشتیبان به ازای خطا در محل اشاره شده هستند.

پارامتر دیگر برای محاسبه زمان عملکرد رلههای اضافه جریان، جریان تنظیم I_{pi} است که در روش پیشنهادی ثابت در نظر گرفته شده است. جدول ۲ جریان بار و جریان تنظیم رلهها را نشان میدهد.

تنظیم زمانی TMS برای رلههای اضافه جریان پیوسته و بین ۰/۰۵ تا ۲ در نظر گرفته شده است.

الگوریتم GA برای این مساله به دفعات اجرا و بهترین جواب از بین جوابها برای مساله تعیین گردیده است. پاسخ های مساله بهینهسازی با روش پیشنهادی، TMS و شماره مشخصه رلههای اضافه جریان که در جدول ۱ مشاهده شد، می باشند.

نتایج حاصل از اجرای بهینه سازی ، TMS و مشخصه هر یک از رلههای اضافه جریان در جدول ۳ آورده شده است. مقادیر بهینه ضرایب وزنی تابع هدف $\alpha_1 \cdot \alpha_2 \cdot \alpha_1 \in \beta$ به ترتیب برابر ۲،۲،۱ و ۱۰۰ تعیین شده است.

زمان عملکرد رلههای اضافه جریان اصلی به ازای خطا در سه نقطه بحرانی F₁ ، F₁و F₃ در جدول ۴ داده شده است. البته نه تنها در نقطه F₁ بلکه در ۷۰ درصد از خط جلوی رله اصلی زمان عملکرد برابر ۰/۰۲ ثانیه خواهد بود.

افزایش سرعت عملکرد رله اضافه جریان در این محدوده موجب می شود که رله اضافه جریان مانند یک رله دیستانس، پشتیبان سریعی برای رله های دیستانس باشد و تجهیزات در هنگام وقوع خطا کمتر تحت تنش قرار گیرند. اختلاف بین زمان عملکرد رله های پشتیبان و اصلی و فاصله زمانی هماهنگی (Δtmb) برای جفت رله های اضافه جریان – اضافه جریان و دیستانس – اضافه جریان جهتی در جدول ۵ آورده شده است.

جدول ۲- جریان تنظیم و جریان بار رلههای اضافه جریان[۸]

شماره	جريان	جريان	شماره	جريان	جريان
رله	بار(A)	تنظيم(A)	رله	بار(A)	تنظيم(A)
1	104	125	8	109	137
2	166	200	9	118	135
3	125	150	10	110	137
4	180	200	11	135	162
5	129	137	12	122	137
6	114	137	13	125	150
7	141	162	14	166	200

جدول۳- تنظیمات رلههای اضافه جریان

e 3		•,
شماره رله	مشخصه رله	TMS
1	2	0.217
2	3	0.489
3	4	0.888
4	3	0.140
5	6	0.256
6	3	0.619
7	3	0.201
8	5	0.07
9	2	0.145
10	4	0.689
11	4	1.200
12	3	0.863
13	2	0.168
14	2	0.162
	Ave.	0.436

0	.). 0		
شماره	$t_{op}(F_1 \text{ to } F_2)$	$t_{op}(F_2)$	t _{op} (F ₃)
رله	(s)	(s)	(s)
1	0.02	0.62	0.80
2	0.02	0.36	0.42
3	0.02	0.25	0.32
4	0.02	0.27	0.33
5	0.02	0.42	0.62
6	0.02	0.37	0.45
7	0.02	0.21	0.32
8	0.02	0.32	0.40
9	0.02	0.54	0.80
10	0.02	0.23	0.32
11	0.02	0.25	0.32
12	0.02	0.37	0.42
13	0.02	0.49	0.62
14	0.02	0.42	0.50
Ave.	0.02	0.36	0.47

جدول ۴- زمان عملکرد رلههای اضافه جریان

شماره حفت رله	رله اصلی	رله پشتيبان	$\Delta t_{mb}(F_1)$	$\Delta t_{mb}(F_2)$	$\Delta t_{mb}(F_3)$	$\Delta t_{mbDISDOC}(F_4)$
1	1	6	0.127	0.000	0.598	0.585
2	2	1	0.479	0.545	0.949	0.791
3	2	7	-0.001	0.000	0.315	0.215
4	3	2	0.100	0.016	0.027	0.004
5	4	3	0.000	0.050	0.248	0.129
6	5	4	0.006	0.000	0.828	0.407
7	6	5	0.298	-	-	-
8	6	14	0.181	0.417	-	1.735
9	7	5	0.299	3.518	0.000	0.320
10	7	13	0.299	0.758	0.000	0.176
11	8	7	0.000	1.532	-	-
12	8	9	0.480	-	-	-
13	9	10	0.000	0.349	3.030	1.370
14	10	11	0.000	0.073	0.218	0.105
15	11	12	0.102	0.012	0.020	0.000
16	12	13	0.298	0.214	0.417	0.391
17	12	14	0.181	0.000	0.092	0.133
18	13	8	0.081	0.000	0.448	0.394
19	14	1	0.480	0.913	0.000	0.404
20	14	9	0.481	2.511	0.000	0.542
	Α	ve.	0.194	0.605	0.449	0.41

جدول ۵ – فاصله های زمانی جفت رلهها در نقاط بحرانی خطا

برای سهولت در این جدول از مقادیر Δt_{mb} بدست آمده از روابط (۱۵) و (۱۶) که بین ۲۰/۰۱ و صفر بودند صرف نظر شده است؛ زیرا ۲۰/۱ در مقایسه با ۲٪ کمترین فاصله زمانی مجاز بین عملکرد رلههای اصلی و پشتیبان خیلی کمتر است. مثلاً اگر ۲۰۹/۰۰ = Δt_{mb} باشد، یعنی اینکه رله پشتیبان ۲۹۱/۰ ثانیه بعد از رله اصلی تریپ میدهد. چون این عدد خیلی نزدیک به CTI فرض شده است، پس میتوان این نتیجه را گرفت که رله پشتیبان حداقل فاصله زمانی مجاز را رعایت کرده است و عدم هماهنگی رخ نداده است.

با توجه به قیود هماهنگی تعریف شده برای مساله بهینهسازی و رابطههای (۱۵) و (۱۶) زمانی قیود هماهنگی

11 Redundant

ارضا خواهند شد که مقادیر ∆ در نقاط بحرانی بزرگتر از صفر باشند. در جدول ۵ مشاهده می شود که همه مقادیر مثبت و تا حدی کوچک هستند و بنابراین هیچگونه عدم هماهنگی بین رلههای اصلی و پشتیبان وجود ندارد و رلهها به درستی با هم هماهنگ شده اند.

نکته قابل توجه در روش پیشنهادی این است که زمان قبل کاهشیافته و برابر مقدار معمولی ۰/۳ ثانیه تنظیم شده است به این معنی که پشتیبانی با عملکرد سریعتری برای رلههای اصلی دیستانس و اضافه جریان خواهیم داشت.

۴-۱-۱- مقایسه با روشهای مشابه

استفاده از واحد عملکرد آنی برای حفاظت قسمتی از خط اصلی موجب عملکرد آنی رله های اضافه جریان درهنگام وقوع خطا در این ناحیه خواهد شد. در واقع در این ناحیه رله اضافه جریان به عنوان حفاظت اضافی^{۱۱} برای ناحیه اول رله دیستانس خواهد بود. در حالی که در مراجع [۸] و [۲۱و۳۱] با استفاده از مشخصههای تاخیری برای رلههای اضافه جریان، زمان عملکرد این رلهها به مراتب بیشتر از روش پیشنهادی خواهد بود.

همچنین با توجه به توضیحات ارائه شده در بخش سه استفاده از واحد عملکرد آنی موجب ارضای محدودیت هماهنگی بین رله اضافه جریان اصلی و دیستانس پشتیبان شده و با تنظیم زمان عملکرد ناحیه دوم رله دیستانس با مقدار ثابت ۲/۰ ثانیه، شرایط نشدنی که مرجع [۴] به آن اشاره شده است، به وجود نخواهد آمد. در مراجع [۸] و اشاره شده است، به وجود نخواهد آمد. در مراجع [۸] و اکارو۲ا] به دلیل محدودیتهای هماهنگی موجود، زمان عملکرد ناحیه دوم رلههای دیستانس به عنوان متغیرهای مساله تعیین شده و مقادیری بیش از مقدار معمولی بدست آمده است. نتایج ارائه شده در مراجع فوق را در مقایسه با زمان عملکرد تعیینی روش پیشنهادی در جدول ۶ مشاهده می کنید.

با مراجع قبلی							
.1			T _{Z2}				
شماره رله	[٨]	[17]	[١٣]	روش پیشنهادی			
1	0.54	0.783	1.33	0.3			
2	0.47	0.68	1.51	0.3			
3	0.44	0.566	0.73	0.3			
4	0.45	0.801	0.92	0.3			
5	0.31	0.871	0.99	0.3			
6	0.68	0.666	1.22	0.3			
7	0.31	0.658	1.25	0.3			
8	0.69	0.626	1.27	0.3			
9	0.67	0.663	1.01	0.3			
10	0.4	0.602	0.88	0.3			
11	0.45	0.539	0.71	0.3			
12	0.55	0.62	1.44	0.3			
13	0.67	0.819	1.3	0.3			
14	0.66	0.614	1.21	0.3			
Ave.	0.54	0.783	1.33	0.3			

جدول ۶ زمان عملکرد ناحیه دوم رلههای دیستانس در مقایسه

۲-۴- شبکه نمونه ۳۰ باسه

شبکه نمونه دیگری که استفاده شده است شبکه ۳۰ باسه IEEE است. این شبکه دارای ۳۰ باس (باسهای۱۳۲k۷ (۳۳K۷)، ۴۲ خط، ۶ ژتراتور و ۴ ترانسفورماتور است. در این شبکه نیز همانند شبکه نمونه ۸ باسه دو رله دیستانس و اضافه جریان در ابتدا و انتهای خطوط نصب شده است. بنابراین مجموع هرکدام از رلههای دیستانس و اضافه جریان برابر ۸۶ رله خواهد بود. شکل ۵ موجود در پیوست دیاگرام پریونیت شده این شبکه نمونه را همراه با موقعیت رلهها را نشان می دهد[۱۷]. اطلاعات ترانسفورماتورها، خطوط انتقال و ژنراتورها از مرجع [۱۸] آورده شدهاند.

در این شبکه نیز زمان عملکرد ناحیه دوم رلههای دیستانس با مقدار معین ۰/۳ ثانیه تنظیم شده است. با توجه به بهم پیوسته بودن شبکه جریان عبوری از برخی رلههای پشتیبان بسیار نزدیک و یا کمتر از جریانهای تنظیم این رلهها است. در این صورت این رلهها به ازای این جریانها یا عمل نمی کنند و یا بعد از گذشت زمان طولانی از وقوع خطا عمل می کنند. با وارد کردن اختلاف زمانی چنین جفت رلههایی در تابع هدف مساله، مقادیر بزرگی در تابع هدف

به ازای کروموزومهای مختلف بدست میآید که در این صورت رسیدن الگوریتم را به پاسخ بهینه دشوار می کند. برای حل مشکل فوق، اختلاف زمانی جفت رلههایی که جریان اتصال کوتاه دیده شده توسط رله پشتیبان از ۱/۲ برابر جریان تنظیم آن رله پشتیبان کمتر بود از تابع هدف حذف گردید. ولی با این حال زمان عملکرد رلههای اصلی این جفت رلهها در مجموع مربعات زمان عملکرد رلهها این جفت رلاها در مجموع مربعات زمان عملکرد رلهها

در این مقاله، همه بارهای شبکه استاتیک فرض شده و هیچگونه تزریق جریان اتصال کوتاه از طرف بارها در هنگام وقوع خطا وجود ندارد. بنابراین نیازی به رلههای اضافه جریان ۵۷ و ۲۹ در این شبکه وجود ندارد. با این وجود برای این رلهها مشخصه و تنظیم ثابتی منظور شده (با برای این رلهها مشخصه و تنظیم ثابتی منظور شده (با نباشند. این رلهها دیگر پشتیبان رلههای ۵۱، ۵۵ ، ۳۷ و نباشند. این رلهها دیگر پشتیبان رلههای اصلی و پشتیبان نباشند. این (۵۵، ۵۷)، (۳۷، ۹۹) و (۷۷، ۹۹) از مساله هماهنگی حذف شده و اختلاف زمان عملکردشان در تابع هدف لحاظ نشدهاند.

نتایج مساله هماهنگی با روش پشنهادی برروی شبکه فوق شامل TMS و همچنین جریان تنظیم این رلهها در جدول ۷ آورده شده است. در این جدول ستون های ۱، ۵ و ۹ نشان دهنده شماره های رلهها، ستون های ۲، ۶ و ۱۰ نشان دهنده نوع مشخصه تعیین شده رلهها (طبق جدول ۱)، ستونهای ۳، ۷ و ۱۱ نشان دهنده میزان TMS آن رله و ستونهای ۴، ۸ و ۱۲ نشان دهنده جریان تنظیمی رلههای جریان زیاد می باشند.

با توجه به نتایج الگوریتم، مشخصههای ۶،۱ و ۲ که عملکرد سریعتری نسبت به سایر مشخصهها دارند برای اکثر رلههای اضافه جریان شبکه نمونه انتخاب شدهاند.

زمان عملکرد رلههای اضافه جریان اصلی به ازای خطا در دو نقطه بحرانی F₂ و F₃ در جدول ۹ و همچنین اختلاف زمان عملکرد جفت رلههای اصلی و پشتیبان در جدول ۱۰ پیوست آورده شده است. در جدول ۱۰ پیوست مشاهده میشود تنها دو Δt_{mb} منفی وجود دارد. بنابراین هماهنگی بین تمام رلهها به غیر از دو جفت رله به ازای خطا در دو نقطه بحرانی برقرار است. در Δt_{mb} جفت رلههایی که جریان اتصال کوتاه عبوری از رله پشتیبان آنها به ازای خطا در نقاط بحرانی با توجه به توضیحات فوقالذکر کمتر و یا نزدیک به جریان تنظیم آن رلهها بودند از مساله هماهنگی کنار گذاشته شدند، که در جدول ۱۰ این Δt_{mb} با علامت خط تیره نشان داده شده-اند. زمان عملکرد رلههای پشتیبان در این جفت رلهها در مقایسه با زمان عملکرد رلههای اصلی آنها زیاد است. بنابراین هیچگونه عدم هماهنگی در این جفت رلهها نیز نخواهیم داشت. زمان عملکرد رلههای اضافه جریان برای خطاهایی که تا ۷۰ درصد خط جلوی رله رخ می دهد به دلیل پوشش این ناحیه توسط واحد عملکرد آنی برابر ۲۰/۰ ثانیه خواهد بود. با توجه به اینکه فرض شده هنگام وقوع خطا کلیدهای دو طرف خط بسته هستند و جریان خطا از دو طرف خط تامین می شود، در برخی خطوط به دلیل اینکه در باس دور رله موردنظر منبع وجود دارد و قسمت اعظمی از جریان خطا را برای خطاهای انتهای خط تامین می کند جریان کمی از رله گذشته و موجب می شود زمان عملکرد رله افزایش یابد و یا مانند رلههای ۸۲ و ۸۳ که به ازای خطا در بدست می آورد.

شماره رله	مشخصه رله	TMS	I _{pickup} (A)	شماره رله	مشخصه رله	TMS	I _{pickup} (A)	شماره رله	مشخصه رله	TMS	I _{pickup} (A)
1	1	2.000	540.8	30	6	0.050	807.3	59	1	0.095	663
2	6	2.000	540.8	31	4	0.137	538.2	60	6	0.116	676
3	2	0.050	724.1	32	6	0.106	535.6	61	2	0.050	236.6
4	6	0.050	928.2	33	2	0.050	601.9	62	6	0.058	608.4
5	1	0.174	624	34	1	0.177	566.8	63	6	0.083	384.8
6	1	0.352	599.3	35	6	0.056	494	64	1	0.063	704.6
7	6	0.095	703.3	36	1	0.050	529.1	65	2	0.050	475.8
8	4	0.061	626.6	37	7	0.094	188.5	66	1	0.195	234
9	2	0.053	455	38	6	0.138	538.2	67	6	0.093	375.7
10	5	0.050	595.4	39	6	0.050	499.2	68	3	0.067	345.8
11	2	0.112	665.6	40	1	0.133	319.8	69	2	0.050	201.5
12	6	0.483	553.8	41	6	0.076	197.6	70	3	0.050	235.3
13	6	0.427	650	42	6	0.197	239.2	71	2	0.088	540.8
14	1	0.050	591.5	43	2	0.079	540.8	72	3	0.050	708.5
15	6	0.470	384.8	44	2	0.548	709.8	73	2	0.050	681.2
16	6	0.251	679.9	45	8	0.402	650	74	5	0.050	754
17	6	0.050	546	46	1	0.786	890.5	75	6	0.096	631.8
18	6	0.091	481	47	2	0.050	622.7	76	7	0.148	404.3
19	6	0.097	638.3	48	5	0.050	631.8	77	2	0.101	392.6
20	2	0.050	595.4	49	2	0.050	384.8	78	2	0.051	244.4
21	6	0.052	239.2	50	6	0.143	618.8	79	1	0.05	131.3
22	6	0.109	404.3	51	6	0.729	607.1	80	6	0.095	616.2
23	6	0.132	585	52	2	0.063	523.9	81	6	0.050	703.3
24	6	0.211	332.8	53	4	0.050	241.8	82	2	0.124	92.3
25	3	0.167	115.7	54	2	0.100	244.4	83	2	0.110	88.4
26	7	0.131	523.9	55	1	0.050	522.6	84	6	0.050	201.5
27	2	0.073	674.7	56	3	0.093	847.6	85	4	0.050	243.1
28	6	0.067	854.1	57	1	0.05	170.3	86	2	0.050	371.8
29	6	0.050	854.1	58	6	0.297	928.2				

 نممنه	شكه	·	اخرافه	المهام	تنظيمات	_V	ددما
 		10 -		(500-0)	, cauca	• •	1900-

۵- نتیجهگیری

در این مقاله روش جدیدی برای هماهنگی رلههای دیستانس و اضافه جریان جهتی با در نظر گرفتن واحد عملکرد آنی و مشخصههای مختلف برای رلههای اضافه جریان ارائه شده است. استفاده از واحد عملکرد آنی علاوه بر کاهش زمان عملکرد حفاظت اضافه جریان برای خطا در

۶- مراجع

- [1] Sadeh, J., & Rajabi Mashhadi, H. (2015). "Considering Pilot Protection in the Optimal Coordination of Distance and Directional Overcurrent Relays". Iranian Journal of Electrical And Electronic Engineering, 20.
- [2] Perez, L. G., & Urdaneta, A. J. (1999). "Optimal coordination of directional overcurrent relays considering definite time backup relaying". Power Delivery, IEEE Transactions on, 14(4), 1276-1284.
- [3] So, C. W., & Li, K. K. (2000). "Time coordination method for power system protection by evolutionary algorithm". Industry Applications, IEEE Transactions on, 36(5), 1235-1240.
- [4] Pérez, L. G., & Urdaneta, A. J. (2001). "Optimal computation of distance relays second zone timing in a mixed protection scheme with directional overcurrent relays". Power Delivery, IEEE Transactions on, 16(3), 385-388.
- [5] Chabanloo, R. M., Abyaneh, H. A., Kamangar, S. S. H., & Razavi, F. (2008, December). "A new genetic algorithm method for optimal coordination of overcurrent and distance relays considering various characteristics for overcurrent relays". In Power and Energy Conference, 2008. PECon 2008. IEEE 2nd International (pp. 569-573). IEEE.
- [6] Abyaneh, H. A., Kamangar, S. S. H., Razavi, F., & Chabanloo, R. M. (2008, September). "A new genetic algorithm method for optimal coordination of overcurrent relays in a mixed protection scheme with distance relays". In Universities Power Engineering Conference, 2008. UPEC 2008. 43rd International (pp. 1-5). IEEE.
- [7] Kamangar, S. S. H., Abyaneh, H. A., Razavi, F., & Chabanloo, R. M. (2010). "Optimal combined overcurrent and distance relays coordination using a new genetic algorithm method". International Journal of Innovations In Energy Systems and Power, 5(1), 17-23.
- [8] Chabanloo, R. M., Abyaneh, H. A., Kamangar, S. S. H., & Razavi, F. (2011). "Optimal combined overcurrent and distance relays coordination incorporating intelligent overcurrent relays characteristic selection". Power Delivery, IEEE Transactions on, 26(3), 1381-1391.
- [9] Sadeh, J., Aminotojari, V., & Bashir, M. (2011, May) "Optimal coordination of overcurrent and distance relays with hybrid genetic algorithm". In Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on (pp. 1-5). IEEE.
- [10] Sadeh, J., Amintojjar, V., & Bashir, M. (2011, October). "Coordination of overcurrent and distance relays using hybrid Particle Swarm Optimization". In Advanced Power System Automation and Protection (APAP), 2011 International Conference on (Vol. 2, pp. 1130-1134). IEEE.
- [11] Moravej, Z., Jazaeri, M., & Gholamzadeh, M. (2012). "Optimal coordination of distance and over-current relays in series compensated systems based on MAPSO". Energy Conversion and Management, 56, 140-151.

خط اصلی، موجب حذف یکی از محدودیتهای هماهنگی

شده و در نتیجه از شرایطی نشدنی که این محدودیتها با

تنظيم ثابت زمان عملكرد ناحيه دوم رلههاى ديستانس

برای مسئله هماهنگی ایجاد میکنند، جلوگیری میکند.

نتایج شبیهسازی بر روی دو شبکه نمونه ۸ باسه و ۳۰ باسه،

سودمندی روش پیشنهادی را نشان می دهد.

- [12] Farzinfar, M., Jazaeri, M., & Razavi, F. (2014). "A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO". International Journal of Electrical Power & Energy Systems, 61, 620-628.
- [13] Damchi, Y., Sadeh, J., & Rajabi Mashhadi, H. (2015). "Preprocessing of distance and directional overcurrent relays coordination problem considering changes in network topology". International Transactions on Electrical Energy Systems.
- [14] Ojaghi, M., Mazlumi, K., & Azari, M. (2014). "Zone-3 impadance reach setting of distance relays by including in-feed current effects in an adaptive scheme". International Journal of Engineering-Transactions A: Basics, 27(7), 1051.
- [15] Sidhu, T. S., Baltazar, D. S., Palomino, R. M., & Sachdev, M. S. (2004). "A new approach for calculating zone-2 setting of distance relays and its use in an adaptive protection system". Power Delivery, IEEE Transactions on, 19(1), 70-77.
- [16] Braga, A. S., & Saraiva, J. T. (1996, May). "Coordination of overcurrent directional relays in meshed networks using the Simplex method". In Electrotechnical Conference, 1996. MELECON'96., 8th Mediterranean (Vol. 3, pp. 1535-1538). IEEE.
- [17] Sharifian, H., Abyaneh, H. A., Salman, S. K., Mohammadi, R., & Razavi, F. (2010). "Determination of the minimum break point set using expert system and genetic algorithm". Power Delivery, IEEE Transactions on, 25(3), 1284-1295.
- [18] Power system test cases.1999. [Online]. Available: www.ee.washington.edu/research/pstca/pf30

۷- پيوست

		6	Et "	. 11	نقطه F ₂	خطا در	Et."	. 11 •	خطا در نقطه F4
لط	هل	يا ر تي	نفطه[۲ ارا ا	حطا در	، حفاظتی واحد	(انتهای محدود	نفطة F3 ساليا)	حطا در لاتتنام	(انتهای ناحیه اول رله
: مع ج	<u>م</u>	ث <u>ة.</u> ح	له اصلی)	(جلوی ر	د آنی)	عملكر	نط اصلی)	(انتهای خ	دیستانس)
		C	Iscm(KA)	Iscb(KA)	Iscm(KA)	Iscb(KA)	Iscm(KA)	Iscb(KA)	Iscb(KA)
1	1	6	2.701	2.701	1.387	1.387	0.813	0.813	1.104
2	2	1	5.388	0.81	3.827	0.433	3.348	0.309	0.369
3	2	7	5.388	1.54	3.827	0.825	3.348	0.587	0.702
4	3	2	3.345	3.345	2.536	2.536	2.243	2.243	2.387
5	4	3	2.241	2.241	1.618	1.618	1.361	1.361	1.489
6	5	4	1.359	1.359	0.726	0.727	0.417	0.417	0.576
7	6	5	4.992	0.415	3.274	0.126	2.704	0.019	0.072
8	6	14	4.992	1.539	3.274	0.471	2.704	0.074	0.27
9	7	5	4.262	0.415	2.283	0.162	1.544	0.415	0.286
10	7	13	4.262	0.809	2.283	0.314	1.544	0.809	0.557
11	8	7	4.992	1.539	3.12	0.367	2.508	0.071	0.146
12	8	9	4.992	0.415	3.12	0.098	2.508	0.02	0.039
13	9	10	1.451	1.451	0.758	0.758	0.417	0.417	0.592
14	10	11	2.343	2.343	1.71	1.71	1.453	1.454	1.581
15	11	12	3.493	3.493	2.647	2.648	2.345	2.345	2.493
16	12	13	5.388	0.81	3.949	0.464	3.496	0.348	0.404
17	12	14	5.388	1.54	3.949	0.883	3.496	0.662	0.769
18	13	8	2.504	2.504	1.331	1.331	0.813	0.813	1.076
19	14	1	4.262	0.809	2.283	0.314	1.544	0.809	0.557
20	14	9	4.262	0.415	2.283	0.162	1.544	0.415	0.286

جدول ۸- جریان اتصال کوتاه عبوری از رلههای اصلی و پشتیبان به ازای خطا در نقاط بحرانی

شماره رله	t _{op} (F ₂) (s)	t _{op} (F ₃) (s)	شماره رله	t _{op} (F ₂) (s)	top(F3) (s)	شماره رله	t _{op} (F ₂) (s)	t _{op} (F ₃) (s)
1	1.70	2.72	30	0.17	0.92	59	0.17	0.32
2	3.77	5.89	31	1.19	1.48	60	0.27	0.32
3	0.34	0.49	32	0.34	0.44	61	0.48	11.51
4	0.16	0.33	33	0.29	0.37	62	0.21	0.35
5	0.31	0.35	34	0.23	0.32	63	0.32	0.46
6	0.34	0.45	35	0.21	0.32	64	0.15	0.32
7	0.24	0.43	36	0.14	0.29	65	0.32	0.40
8	0.31	0.42	37	0.26	0.32	66	0.26	0.32
9	0.42	0.50	38	0.52	0.86	67	0.29	0.32
10	1.27	1.63	39	0.19	0.32	68	0.37	0.40
11	0.40	0.43	40	0.19	0.32	69	0.39	0.54
12	1.10	1.54	41	0.25	0.32	70	0.45	0.57
13	0.74	0.83	42	0.32	0.46	71	0.53	1.15
14	0.06	0.08	43	0.29	0.32	72	0.47	2.22
15	1.81	7.42	44	3.05	4.90	73	0.34	0.73
16	0.79	1.23	45	0.75	2.06	74	1.13	1.26
17	0.11	0.13	46	1.98	10.70	75	0.24	0.32
18	0.24	0.32	47	0.34	0.83	76	0.58	0.87
19	0.25	0.32	48	1.16	1.33	77	0.72	0.94
20	0.35	0.45	49	0.47	2.31	78	0.32	0.39
21	0.16	0.32	50	0.36	0.79	79	0.00	0.00
22	0.39	0.49	51	1.12	1.21	80	0.24	0.32
23	0.41	0.55	52	0.38	0.44	81	0.27	0.64
24	0.59	0.65	53	0.52	0.89	82	1.29	-0.22
25	0.44	0.46	54	1.61	2.72	83	0.89	-0.22
26	0.28	0.47	55	0.11	1.23	84	0.24	0.34
27	0.32	0.36	56	0.58	0.79	85	0.15	0.51
28	0.23	0.86	57	0.00	0.00	86	0.36	0.69
29	0.17	0.64	58	0.73	0.92			
ميانگين(F3)ميانگين						0.	54=top(F2	ميانگين (

جدول ۹- زمان عملکرد رلههای اضافه جریان شبکه نمونه ۳۰ باسه

شماره جفت رله	رله اصلی	رله پشتيبان	$\Delta t_{mb}(F_1)$	$\Delta t_{mb}(F_2)$	$\Delta t_{mb}(F_3)$	$\Delta t_{mbDISDOC}(F_4)$	شماره جفت رله	رله اصلی	رله پشتيبان	$\Delta t_{mb}(F_1)$	$\Delta t_{mb}(F_2)$	$\Delta t_{\rm mb}(F_3)$	$\Delta t_{mbDISDOC}(F_4)$
1	4	1	2.423	-	-	-	115	11	53	0.572	1.765	2.856	2.381
2	6	1	2.425	-	-	-	116	12	53	0.578	-	-	-
3	7	1	2.423	-	-	-	117	13	53	0.572	1.220	1.778	1.997
4	45	1	2.424	-	-0.013	3.775	118	43	53	0.573	2.858	4.807	3.756
5	4	2	5.610	-	-	-	119	50	53	0.579	-	0.597	-
6	6	2	5.613	-	-	-	120	51	53	0.572	2.261	-	5.214
7	7	2	5.610	-	-	-	121	10	54	-	-	-	-
8	44	2	5.612	-	-0.086	8.692	122	12	54	-	-	-	-
9	5	3	0.170	0.028	0.098	0.086	123	13	54	-	-	-	-
10	8	4	0.015	-	-	-	124	43	54	-	0.294	0.000	0.114
11	16	4	0.018	-	-	-	125	50	54	-	-	-	-
12	48	4	0.015	-	-	-	126	51	54	-	-	-	-

13	8	5	0.030	0.000	0.147	0.120	127	10	55	-	-	-	-
14	16	5	0.032	-	-	-	128	11	55	-	-	-	-
15	47	5	0.031	-	-	-	129	13	55	-	-	-	-
16	9	6	0.131	0.000	0.145	0.213	130	43	55	-	-	-	-
17	10	7	0.113	-	-	-	131	50	55	-	-	-	-
18	11	7	0.112	0.467	-	-	132	51	55	-	-	-	-
19	12	7	0.114	-	-	-	133	10	56	0.469	1.824	-	4.369
20	13	7	0.112	0.000	-	0.667	134	11	56	0.468	0.888	1.334	1.214
21	43	7	0.112	-	-	-	135	12	56	0.473	-	-	-
22	51	7	0.112	-	-	-	136	43	56	0.469	1.448	2.200	1.809
23	10	8	0.100	0.938	3.410	3.010	137	50	56	0.471	-	1.875	5.644
24	11	8	0.099	0.265	0.521	0.505	138	51	56	0.468	0.002	0.302	1.006
25	12	8	0.102	4.906	5.910	7.122	139	15	57	-	-	-	-
26	13	8	0.099	0.004	0.228	0.596	140	55	57	-	-	-	-
27	43	8	0.099	0.635	0.997	0.820	141	14	58	0.606	-	-	-
28	50	8	0.101	-	-	-	142	55	58	0.606	-	-	-
29	53	9	0.179	0.000	0.486	0.443	143	8	59	0.000	-	-	-
30	52	10	1.311	2.622	3.585	3.180	144	47	59	0.002	-	-	-
31	42	11	0.113	0.565	-	1.211	145	48	59	0.000	-	-	-
32	14	12	1.223	-	-	-	146	18	60	0.000	-	-	-
33	15	12	1.221	1.808	-	-	147	19	60	0.000	0.148	0.258	0.195
34	26	13	0.517	-	-	-	148	20	60	0.000	-	-	-
35	27	13	0.515	0.945	1.456	1.208	149	59	60	0.000	-	-	-
36	28	13	0.516	0.908	0.073	0.786	150	17	61	-	-	-	-
37	29	13	0.516	0.966	0.288	0.786	151	19	61	-	-	0.173	-
38	30	13	0.516	1.027	0.003	0.820	152	20	61	-	-	-	-
39	58	13	0.516	3.730	0.000	0.000	153	59	61	-	-	-	-
40	26	15	-	-	-	-	154	17	62	0.027	-	-	-
41	27	15	-	-	-	-	155	18	62	0.030	-	-	-
42	28	15	-	-	-	-	156	20	62	0.028	-	-	-
43	29	15	-	-	-	-	157	59	62	0.028	-	-	-
44	30	15	-	-	-	-	158	17	63	0.141	-	-	-
45	56	15	-	-	-	-	159	18	63	0.143	-	-	-
46	17	16	0.912	-	-	-	160	19	63	0.141	-	-	-
47	18	16	0.917	-	-	-	161	59	63	0.142	-	-	-
48	19	16	0.913	-	-	-	162	61	64	0.000	-	-	-
49	20	16	0.915	-	-	-	163	63	65	0.079	0.137	0.588	0.353
50	21	18	0.000	-	-	-	164	32	66	-	-	-	-
51	23	19	0.000	0.000	-	-	165	62	66	0.000	0.476	-	-
52	32	19	0.000	0.659	-	-	166	64	66	-	-	-	-
53	64	19	0.000	-	-	-	167	66	67	0.004	0.000	0.249	0.076
54	22	20	0.135	0.294	1.015	0.667	168	67	68	0.083	0.000	0.065	0.038
55	23	21	0.001	-	-	-	169	27	69	0.219	-	-	-
56	32	21	0.000	-	-	-	170	28	69	0.219	-	-	-
57	62	21	0.000	-	-	-	171	29	69	0.219	-	-	-
58	70	22	0.174	0.000	0.305	0.288	172	30	69	0.220	-	-	-

59	24	23	0.232	0.000	0.208	0.410	173	56	69	0.218	0.483	-	1.267
60	25	24	0.332	0.000	0.020	0.162	174	58	69	0.219	-	-	-
61	69	25	0.144	0.000	0.129	0.178	175	26	70	0.254	-	-	-
62	68	26	0.146	0.000	0.071	0.119	176	28	70	0.253	-	0.724	2.396
63	65	27	0.039	0.080	0.275	0.223	177	29	70	0.253	-	0.940	2.396
64	31	28	0.553	-	-	-	178	30	70	0.253	-	0.623	-
65	72	28	0.567	-	-	-	179	56	70	0.251	0.912	-	2.080
66	31	29	0.334	-	-	-	180	58	70	0.252	-	-	-
67	71	29	0.345	-	-	-	181	26	71	0.846	-	-	-
68	33	30	-	-	-	-	182	27	71	0.841	-	-	-
69	74	30	-	-	-	-	183	29	71	0.847	-	0.001	-
70	33	31	1.177	-	-	-	184	30	71	0.846	-	0.498	-
71	73	31	1.181	-	0.000	2.753	185	56	71	0.839	1.594	2.159	2.272
72	34	32	0.118	-	-	-	186	58	71	0.842	-	-	-
73	35	33	0.050	-	-	-	187	26	72	1.967	-	-	-
74	77	33	0.050	0.719	-	-	188	27	72	1.946	-	-	-
75	35	34	0.001	-	-	-	189	28	72	1.973	-	0.292	-
76	76	34	0.000	0.271	-	-	190	30	72	1.969	-	-	-
77	36	35	0.001	-	-	-	191	56	72	1.940	-	-	-
78	37	35	0.000	-	-	-	192	58	72	1.950	-	-	-
79	39	37	0.001	-	-	-	193	26	73	0.418	-	-	-
80	40	37	0.002	-	-	-	194	27	73	0.415	-	-	-
81	81	37	0.000	-	-	-	195	28	73	0.418	-	-	-
82	39	38	0.558	-	-	-	196	29	73	0.418	-	-	-
83	40	38	0.563	-	-	-	197	56	73	0.414	0.930	-	-
84	80	38	0.552	-	-	-	198	58	73	0.415	-	-	-
85	41	39	0.006	-	-	-	199	71	74	0.946	2.952	2.709	3.539
86	84	40	0.000	-	-	-	200	72	74	0.946	3.009	1.640	3.539
87	83	41	0.000	-	-	-	201	23	75	0.000	-	-	-
88	38	42	0.141	-	-	-	202	62	75	0.000	0.070	0.000	0.029
89	86	42	0.140	-	-	-	203	64	75	0.000	-	-	-
90	38	43	0.000	0.361	1.797	1.128	204	73	76	0.560	-	-	-
91	85	43	0.000	1.046	-	-	205	74	76	0.556	0.000	0.194	0.989
92	2	44	4.615	-	-0.069	-	206	75	77	0.625	-	-	-
93	3	44	4.618	-	-	-	207	76	78	0.069	0.000	0.516	0.543
94	1	45	1.767	-	0.009	-	208	77	78	0.069	0.820	-	-
95	3	45	1.769	-	-	-	209	37	79	-	-	-	-
96	1	46	-	-	-	-	210	78	79	-	-	-	-
97	2	46	-	-	-	-	211	36	80	0.000	-	-	-
98	6	47	0.523	-	-	-	212	78	80	0.000	-	-	-
99	7	47	0.523	-	0.613	-	213	85	81	0.331	-	-	-
100	44	47	0.518	-	-	-	214	86	81	0.326	-	-	-
101	45	47	0.518	-	-	-	215	40	82	-	0.240	0.000	0.071
102	46	48	1.018	2.316	0.000	5.729	216	80	82	-	-	-	-
103	4	49	-	-	-	-	217	81	82	-	-	-	-
104	7	49	-	-	0.177	-	218	39	83	-	0.234	0.000	0.067

105	44	49	-	-	-	-	219	80	83	-	-	-	-
106	45	49	-	-	-	-	220	81	83	-	-	-	-
107	4	50	0.488	-	-	-	221	82	84	0.017	-	-	-
108	6	50	0.488	-	-	-	222	54	85	0.190	0.915	-	-
109	44	50	0.484	-	-	-	223	10	86	0.372	-	-	-
110	45	50	0.484	-	-	-	224	11	86	0.373	-	-	-
111	16	51	0.894	6.906	-	-	225	12	86	0.375	-	-	-
112	47	51	0.893	3.548	-	-	226	13	86	0.371	-	-	-
113	48	51	0.892	0.037	0.002	0.964	227	50	86	0.374	-	-	-
114	49	52	0.120	0.253	0.000	1.207	228	51	86	0.371	0.107	-	1.291