پیاده سازی کنترلر بهینه هوشمند بر مبنای تابع انرژی لیاپانوف عناصر موازی FACTS جهت بهبود پایداری گذرا

نویسندگان

1 دانشگاه شهرکرد

2 گروه مهندسی برق، دانشگاه آزاد اسلامی، واحد بروجن، بروجن، ایران

چکیده

در این مقاله به بهبود پایداری گذرا با بهره گیری از عناصر موازی انعطاف پذیر سیستم قدرت SVC و ASVC پرداخته شده است. روش کنترلی که در این راستا بکار گرفته شده است مبتنی بر تئوری لیاپانوف و استفاده از تابع انرژی می باشد. روش کنترلی فوق میرایی سیستم را تضمین می نماید با این حال به منظور بهبود سرعت میرایی از روش های بهینه سازی هوشمند استفاده شده است. در این راستا از روش بهینه سازی جدید جهش قورباغه (SFL) استفاده شده است. تابع هدف در نظر گرفته شده در این حالت به شکلی بوده که منجر به تسریع میرایی با توجه به قیود عملی حاکم بر مسئله می شود. عناصر موازی FACTS بکار رفته در یک سیستم تک ماشینه نمونه مدلسازی گردیده است.این مدل به شکلی در نظر گرفته شده است که امکان تغییر توپو لوزی نیز درآن میسر باشد. نتایج شبیه سازی اثربخشی روش کنترلی بهینه پیشنهادی را نشان می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimized implementation of intelligent controller based on the Lyapunov energy function of FACTS devices for improving transient stability

نویسندگان [English]

  • saeed abazari 1
  • mohammad sadegh payam 2
چکیده [English]

In this paper, improvement of the transient stability of power systems using the Flexible AC Transmission Systems (FACTS) parallel devices (ASVC and SVC) has been analyzed. Control methods that have been used in this paper, based on Lyapunov theory and Transient Energy Function (TEF) is used. Controls the damping system ensures However, in order to improve the damping rate of the intelligent optimization methods are used. In this direction, a new optimization method Shuffled Frog Leaping (SFL) was used. The objective function considered in this way, which tends to be the dominant attenuation due to practical constraints. Simulation results show the effectiveness of the proposed optimal control method.

کلیدواژه‌ها [English]

  • transient stability
  • SVC
  • ASVC
  • lyapanov based control
  • SHuffled Frog Leaping(SFL)
 [1] P. Kundur, "Power System Stability and Control", McGraw-Hill, Inc. 1994.

[2] N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and technology of flexible ac transmission systems", IEEE Press, NY, 1999.

[3] Yong Hua Song, Allan T. Johns, “Flexible AC Transmission Systems (FACTS)”, London, UK: IEE Press, 1999.

[4] Anghel, M. ; Milano, F. ; Papachristodoulou, A.," Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis", Circuits and Systems I: Regular Papers, IEEE Transactions on, Volume 60, Issue 9,pp. 2533 - 2546, 2013.

 [5]T. Athay, R. Podmore, S. Virmani, "A Practical Method for the Direct Analysis of Transient Stability", IEEE Trans. PAS, pp. 573-584, March/April 1979.

[6] N. Kakimoto, M. Hayashi, "Transient Stability Analysis of Multimachine Power System by Lyapunov's Direct Method", Proc. 20th IEEE Conf. on Decision and Control, 1981.

[7] V. Azbe, R. Mihalic, "Application of The Direct Lyapunov Method for Optimum Control of UPFC", IEEE Power Tech, Russia, pp. 1-6, June 2005.

 [8] Abazari S., Mahdavi J., Mokhtari M., Ehsan M.," Transient Stability Improvement by  Using Advanced Static Var Compensators", The International Journal For Electric Power Componets and Systems,Taylor &Francis  Group,USA,Vol31,April.2003,pp 321-334.

[9] Abazari S., Mahdavi J., Zolghadri M., Ehsan M. “A Rule –Based Advances Static Var Compensator Control Scheme for  Transient Stability Improvement”The International Journal of Science and Tecnology& Technology, Scientia Iranica,March 2006.

[10] Azbe V., Mihalic R., The Control Strategy for an IPFC Based on the Energy Function, IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, pp 1662-1669, 2008.

 [11] L. Whei-Min and S. Yuh-Sheng, "Genetic algorithms: concepts and applications", IEEE Transactions on Industrial electronics, Vol. 43, No.5, pp. 519-533, 1996.

[12] C. Zhang, J. Zhang  and X. Gu, “The Application of Hybrid Genetic Particle Swarm Optimization Algorithm in the Distribution Network Reconfigurations Multi-Objective Optimization,”  International Conference on Natural Computation (ICNC 2007), pp. 455 – 459, 2007.

[13] X. Yao, Y. Liu, G. Lin, "Evolutionary Programming Made Faster", IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102, Jul. 1999.

[14] A. Ghosh, "Evolutionary Algorithms for Multi-Criterion Optimization: A Survey", International Journal of Computing & Information Sceiences, Vol. 2, No. 1, pp. 38-57, Apr. 2004.

[15] Bijami E, Askari J , Farsangi M.M. , Design of stabilizing signals for power system damping using generalized predictive control optimized by a new hybrid shuffled frog leaping algorithm, Generation, Transmission & Distribution, IET  ,Volume 6, Issue10, pp 1036 – 1045, 2012.

[16] Ebrahimi J, Hosseinian, S.H, Gharehpetian G.B, Design of stabilising signals for power system damping using generalised predictive control optimized by a new hybrid shuffled frog leaping algorithm, Power Systems, IEEE Transactions on  Volume 26, pp. 573-581, 2011.

[17] Huynh T. H., “A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers” Fifth IEEE International Conference on Industrial Technology (IEEE-ICIT'08), Chengdu, China, 21-24 April 2008.

[18] Zhang X.,. Hu X., Gui G., Wang Y., and  Niu Y., “An improved shuffled frog leaping algorithm with cognitive behavior”, Proceeding of 7th World Congress on Intelligent Control and Automation, 2008, China.

[19]Baghaee H. R., Jannati M., Improvement of Voltage Stability and Reduce Power System Losses by Optimal GA-based Allocation of Multi-type FACTS Devices, Eleventh International conference on Electrical and Electronic Equipment, OPTIM, pp. 209– 214, May 2008.