کاهش ارتعاشات خودتحریک در فرآیند میکرو-فرزکاری با استفاده از جاذبهای ارتعاشی

نوع مقاله : پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

در این مقاله‏‌ به مسئله فرونشاندن ارتعاشات خود تحریک در فرآیند میکرو-فرزکاری به منظور دستیابی به دقت بیشتر، کیفیت سطح بهتر و نرخ برداشت ماده بالاتر پرداخته شده است. فرآیند میکرو-فرزکاری به صورت یک سیستم 2 درجه آزادی مدل شده و اثرات خروج از مرکز ابزار برش نیز در نظر گرفته شده است. به منظور افزایش پایداری سیستم در عمق برش بیشتر و در نتیجه نرخ برداشت ماده بالاتر، جاذبهای ارتعاشی طراحی شده‌اند و مقادیر پارامترهای آنها بوسیله یک الگوریتم توسعه یافته، بهینه شده‌ است. تاثیر جاذب ارتعاشی بر پاسخ زمانی سیستم و ناحیه پایداری فرآیند، مورد تحقیق قرار گرفته و نشان داده شده است که ارتعاشات سیستم تا حد امکان کاهش یافته و ناحیه پایداری نیز به میزان قابل توجهی گسترش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Micro-milling self-excited vibrations reduction using vibration absorbers

نویسندگان [English]

  • Saleh Shakeri
  • Farhad Sheykh Samani
چکیده [English]

The goal of this paper is to minimize self-excited vibration in the micro-milling process. This goal is achieved by using passive linear and nonlinear vibration absorbers. By reducing this unwanted vibration the final surface will have better surface quality. In this paper the micro-milling process is modelled as a two degree of freedom system and the effect of the cutting tool eccentricity is considered. To have stability for the larger depth of cut the optimal parameters for the passive vibration absorber is defined by a developed algorithm. The effects of vibration absorber on the stability and time response are investigated. The results show that using an optimal vibration absorber the vibration amplitude decreased and stability zone enlarged sensibility.

کلیدواژه‌ها [English]

  • Nonlinear vibration
  • self-excited vibration
  • micro-milling process
  • vibration absorbers
  • stability
[1] C. Kim, J. Mayor, J. Ni, (2004), “A static model of chip formation inmicroscale milling”, Journal of
Manufacturing Science and Engineering, 126, 710–719.
[2] I. Kang, J.S. Kim, J.H. Kim, M. Kang, Y. Seo, (2007), “A mechanistic model of cutting force in the micro
end milling process”, Journal of Material Processing Technology, 187, 250–255.
[3] G. Bissacco, H. Hansen, J. Slunsky,(2008), “Modelling the cutting edge radius size effect for force prediction
in micro milling”, Manufacturing Technology, 57 ,113–116.
[4] S.M. Afazov, S.M. Ratchev, J. Segal, (2010), “Modelling and simulation of micro-milling cutting forces”,
Journal of Materials Processing Technology, 210,2154–2162.
[5] S.M. Afazov, S.M. Ratchev, J. Segal,(2011), “Prediction and experimental validation of micro-milling cutting
forces of AISI H13 stainless steel at hardness between 35 and 60 HRC”, International Journal of
Advanced Manufacturing Technology, 62 , 1-13.
[6] Y.Altintas, G.Stepan, D.Merdol, Z.Dombovari,(2008), “Chatter stability of milling in frequency and discrete
time domain”, CIRP-Journal of Manufacturing Science and Technology, 1 , 35–44.
[7] Y. Altintas, E. Budak,(1995), “Analytical prediction of stability lobes in milling”, CIRP Annals Manufacturing
Technology, 44 , 357–362.
[8] E. Budak, Y. Altintas,(1998), “Analitycal prediction of chatter stability conditions for multi-degree of systems
in milling, part1-modelling and part2-applications”, Transactions of ASME Journal of Dynamic
Systems Measurement and Control, 120,22–30.
[9] T. Insperger, G. Stepan,(2000), “Stability of the milling process”, Periodica Polytechnica, 44,47–57.
[10] T. Insperger, G. Stepan,(2004), “Updated semi-discretization method for periodic delay-deferential equations
with discrete delay”, International Journal for Numerical Methods in Engineering, 61, 117–141.
[11] E.Govekar, J.Gradisek, M.Kalveram ,T.Insperger, K.Weinert ,G.Stepan, I.Grabec,(2005), “On stability and
dynamics of milling at small radial immersion”, CIRP Annals-Manufacturing Technology, 54,357–
362.
[12] N.D. Sims, B. Mann, S. Huyanan,(2008), “Analytical prediction of chatter stability for variable pitch and
variable helix milling tools”, Journal of Sound and Vibration, 317,664–686.
[13] G. Quintana, J. Ciurana, D. Teixidor,(2008), “A new experimental methodology for identification of stability
lobes diagram in milling operations”, International Journal of Machine Tools & Manufacture, 48
,1637–1645.
[14] E. Kuljanic, M. Sortino, G. Totis,(2008), “Multisensor approaches for chatter detection in milling”, Journal
of Sound and Vibration, 312,672–693.
[15] N.D. Sims, G. Manson, B. Mann,(2010), “Fuzzy stability analysis of regenerative chatter in milling”, Journal
of Sound and Vibration, 329 ,1025–1041.
[16] S.M. Afazov , S.M. Ratchev, J. Segal, A.A. Popov,(2012), “Chatter modelling in micro-milling by
considering process nonlinearities”, International Journal of Machine Tools & Manufacture, 56 ,28–
38.
[17] F.S. Samani, F. Pellicano,(2010), “Linear and Nonlinear Dynamic Absorbers”, Lambert Academic
Publishing, Saarbrücken Germany, ISBN: 978-3-8383-2425-8.
[18] J. Ormondroyd, J.P. Den Hartog,(1928), “The theory of the dynamic vibration absorber”, Transaction of the
American Society of Mechanical Engineers, 50,9-22.
[19] F.S. Samani, F. Pellicano,(2012), “Vibration reduction of beams under successive traveling loads by means
of linear and nonlinear dynamic absorbers”, Journal of Sound and Vibration, 331,2272–2290.
[20] X. Shi, C.S. Cai,(2008), “Suppression of Vehicle-Induced Bridge Vibration Using Tuned Mass Damper”,
Journal of Vibration and Control, 14, 1037-1054.
[21] Z. Kalogiratou, T. Monovasilis, G. Psihoyios, T.E. Simos,(2014), “Runge–Kutta type methods with special
properties for the numerical integration of ordinary differential equations”, International Association
for Mathematics and Computers in Simulation, 536,75–146.
[22] W.Y. Bao, I.N. Tansel,(2000), “Modelling micro-end-milling operations; Part II: tool run-out”, International
Journal of Machine Tools & Manufacture, 40 ,2175–2192.
[23] L. Zhongqun, L. Qiang,(2008), “Solutions and analysis of chatter stability for end milling in the timedomain”,
Chinese Journal of Aeronautics, 21 (2008) 169–178.