[1] Younis, M. I. (2010). “Microsystems: Mems Linear and Nonlinear Statics and Dynamics”. vol. 20.
[2] Hajjam, A., Pourkamali, S. (2012). “Fabrication and characterization of MEMS-based resonant organic gas sensors”. Sensors Journal, IEEE, vol. 12, pp. 1958-1964.
[3] Sharma, M., Sarraf, E. H., Baskaran, R., Cretu, E. (2012). “Parametric resonance: Amplification and damping in MEMS gyroscopes”. Sensors and Actuators A: Physical, vol. 177, pp. 79-86.
[4] Timurdogan, E., Alaca, B. E., Kavakli, I. H., Urey, H. (2011). “MEMS biosensor for detection of Hepatitis A and C viruses in serum”. Biosensors and Bioelectronics, vol. 28, pp. 189-194.
[5] Tocchio, A., Caspani, A., Langfelder, G. (2012). “Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer”. Sensors Journal, IEEE, vol. 12, pp. 1719-1725.
[6] Torrents, A., Azgin, K., Godfrey, S., Topalli, E., Akin, T., Valdevit, L. (2010). “MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design”. Journal of Micromechanics and Microengineering, vol. 20, p. 125004.
[7] Braghin, F., Resta, F., Leo, E., Spinola, G. (2007). “Nonlinear dynamics of vibrating MEMS”. Sensors and Actuators A: Physical, vol. 134, pp. 98-108.
[8] Mestrom, R., Fey, R., Van Beek, J., Phan, K., Nijmeijer, H. (2008). “Modelling the dynamics of a MEMS resonator: Simulations and experiments”. Sensors and Actuators A: Physical, vol. 142, pp. 306-315.
[9] Younis, M., Nayfeh, A. (2003). “A study of the nonlinear response of a resonant microbeam to an electric actuation”. Nonlinear Dynamics, vol. 31, pp. 91-117.
[10] De, S. K., Aluru, N., (2006). “Complex nonlinear oscillations in electrostatically actuated microstructures”. Microelectromechanical Systems, Journal of, vol. 15, pp. 355-369.
[11] Luo, A. C., Wang, F. Y. (2002). “Chaotic motion in a micro-electro–mechanical system with non-linearity from capacitors”. Communications in Nonlinear Science and Numerical Simulation, vol. 7, pp. 31-49.
[12] Wang, Y. C., Adams, S. G., Thorp, J. S., MacDonald, N. C., Hartwell, P., Bertsch, F. (1998). “Chaos in MEMS, parameter estimation and its potential application”. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 45, pp. 1013-1020.
[13] Haghighi, H. S., Markazi, A. H. (2010). “Chaos prediction and control in MEMS resonators”. Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 3091-3099.
[14] Collard, D., Takeuchi, S., Fujita, H. (2008). “MEMS technology for nanobio research”. Drug discovery today, vol. 13, pp. 989-996.
[15] Fleck, N., Muller, G., Ashby, M., Hutchinson, J. (1994). “Strain gradient plasticity: theory and experiment”. Acta Metallurgica et Materialia, vol. 42, pp. 475-487.
[16] Namazu, T., Isono, Y., Tanaka, T. (2000). “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM”. Microelectromechanical Systems, Journal of, vol. 9, pp. 450-459.
[17] Stölken, J., Evans, A. (1998). “A microbend test method for measuring the plasticity length scale” Acta Materialia, vol. 46, pp. 5109-5115.
[18] Tang, C., Alici,G. (2011). “Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors”. Journal of Physics D: Applied Physics, vol. 44, p. 335501.
[19] Eringen, A. C. (1972). “Linear theory of non-local elasticity and dispersion of plane waves”. International Journal of Engineering Science, vol. 10, pp. 425-435.
[20] Eringen, A. C. (2002). “Non-local continuum field theories”.
[21] Lim, C., Li, C., Yu, J. L. (2010). “Dynamic behavior of axially moving nanobeams based on non-local elasticity approach”. Acta Mechanica Sinica, vol. 26, pp. 755-765.