تشخیص ترک در تیر تیموشنکو با استفاده از داده های فرکانس و تابع پاسخ فرکانسی

نوع مقاله : مقاله عمران

نویسندگان

دانشگاه آزاد اسلامی

چکیده

در این تحقیق روش نوینی جهت تشخیص محل و عمق ترک در تیر تیموشینکو با استفاده از تابع پاسخ فرکانسی و فرکانس ارائه شده است. تابع پاسخ فرکانسی و فرکانس سه مود اول به عنوان ورودی ماشین یادگیری کرانه ای بکار رفته است. این در حالیست که محل و عمق ترک در المانهای مختلف سازه ای تیر به عنوان خروجی برای آموزش ماشین بکار میرود. برای نمایش کارایی روش ارائه شده، از تیر کنسولی و تیر دو سر مفصل با سه سناریوی مختلف شامل یک ترک و چند ترک در تیر استفاده شده است. همچنین برای اعتبار سنجی مدلسازی صورت گرفته، فرکانسهای تیر کنسولی با مقادیر ارائه شده در منابع دیگر مقایسه گردیده است. در بخش دیگری از مطالعه انجام شده، اثر وجود سطوح مختلف نوفه در داده‌های ورودی مورد بررسی قرار گرفته است. نتایج بدست آمده بیانگر کارایی روش ارائه شده در تشخیص محل و میزان ترک در سازه‌های تیری است. همچنین روش پیشنهادی عملکرد مناسبی در حالت وجود نوفه در داده‌های فرکانس و تابع پاسخ فرکانسی به عنوان ورودی های ماشین دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Crack Detection of Timoshenko Beam Using Frequency and Frequency Response Function

نویسندگان [English]

  • Siamak Ghadimi
  • Seyed Sina Kourehli
چکیده [English]

This paper presents a novel approach to detect and estimate cracks in Timoshenko Beams using frequencies and frequency response functions and extreme learning machine. For this purpose, the extreme learning machine used the three first natural frequencies and frequency response functions of beam structure as input which may be noisy or noise free and crack states in beam as output. This data is acquired by the analysis of cracked beams applying the finite element method. To demonstrate the potential of the proposed vibration analysis over existing ones, a validation study has been done. The performance of the presented method has been verified through two numerical examples, namely, a cantilever beam and simply supported beam containing single or multi cracks. Results indicate that the proposed method works well in prediction and estimation of crack and obtained results are accurate. Also, the results show that the presented method is sensitive to the location and severity of crack in spite of the noisy modal data.

کلیدواژه‌ها [English]

  • Crack Detection
  • frequency response function
  • Natural frequencies
  • Extreme Learning Machine
[1] Bovsunovsky, A. (2004). “The mechanisms of energy dissapation in the non-propagating fatigue cracks in metalicmaterials”. Engineering Fracture Mechanics, Vol. 71, pp. 2271-2281.
[2] Barad, K. H.,  Sharma, D. S. and Vyas, V. (2013). “Crack detection in canteliver beam by frequency based method”.Procedia Enineering, Vol. 51, pp. 770-775.
[3] Chinchalkar, S. (2001). “Detection of the crack location in beams using natural frequencies”. Journal of Sound and Vibration, Vol. 247, pp. 417–429,.
[4] Khaji, N., Shafiei, M. and Jalalpour, M. (2009). “Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions”. International Journal of Mechanical Sciences, Vol. 51 pp. 667–681.
[5] Pandey, A.K. and Biswas, M. and Samman, M. (1991). “Damage detection from change in curvature mode shapes”. Journal of Sound and Vibration, Vol. 145, pp. 321–332.
]6[ عزالدین، ا.، نادرپور، ح.، خیرالدین، ع.، قدرتی امیری، غ. (1393)، تشخیص محل و میزان ترک در تیرها با استفاده از تبدیل موجک، مدل سازی در مهندسی، سال 12، شماره 39
]7[ تبریزیان، ز.، حسینعلی بیگی، م.، قدرتی امیری، غ. (1394)، تشخیص آسیب در سازه های فلزی با استفاده از اطلاعات خیز استاتیکی و الگوریتم ژنتیک، مدل سازی در مهندسی، سال13، شماره 41.
[8] Chasalevris, A.C. and Papadopoulos, C.A. (2006). “Identification of multiple cracks in beams under bending”, Mechanical Systems and Signal Processing. Vol. 20, pp. 1631-1673.
[9] Sampaio, R.P., Maia, N. M. and Silva, J. M. (1999). “Damage Detection Using the Frequency Response Function Curvature Method”. Journal of Sound and Vibration, Vol. 226, pp. 1029-1042.
[10] Lee, U. and Shin, J. (2002). “A Frequency Response Function-Based Structural Damage IdentificationMethod”. Computers & Structures, Vol. 80, pp. 117-132.
[11] Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008). “Damage detection of truss bridge joints using artificial neural networks”. Expert Systems with Applications, Vol. 35, pp. 1122–1131.
[12] Suresh, S., Omkar, S.N.,  Ganguli, R. and Mani, V. (2004). “Identification of crack location and depth in a cantilever beam using a modular neural network approach”. Smart Materials and Structures, Vol. 13, pp. 907–915.
]13[ رضایی پژند، م.، موسوی، س. (1388)، ترک‎یابی در سازه‎های مستوی با الگوریتم ژنتیک، مدل سازی در مهندسی، سال 4، شماره 18.
[14] Matlab User Manual, Mathwork Inc. Lowell, MA, U.S.A, (2015).
[15] Mehrjo, M, Khaji, N. and Ghafory-Ashtiany, M. (2014). “New Timoshenko-cracked beam element and crack detection in beam-like structures using genetic algorithm” Inverse Problems in Scince and E­ngineering,Vol. 22, pp. 359–382.
[16] Chopra, A. (2001). “Dynamics of Structures”, Prentice-Hall, New Jersey.
[17] Craig, R. (198—1). “Structural Dynamics”, John Wiley & Sons.
[18] Girard, A. (1990). “Structural Dynamics in Industry”. John Wiley & Sons.
[19] Huang, GB, Zhu, QY and Siew, CK. (2006). “Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks”. Neurocomputing, Vol. 70, pp.489-501.
[20] Ertugrul, OF, Kaya, Y. (2014). “A detailed analysis on Extreme learning machine and novel approaches based on ELM”. American Journal of computer science and engineering, Vol. 1, pp. 43-50.
[21] Kourehli, SS., Bagheri A., Amiri GG. and Ghafory-Ashtiany M. “Structural damage detection using incomplete modal data and incomplete static response”, KSCE Journal of civil engineering, Vol. 17, pp. 216-223, (2013).