[1] Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton Univ. Press, Princeton, N.J.
[2] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica Vol. 4, pp. 373-395.
[3] Klee, V., G. J. Minty, (1972). How good is the simplex algorithm In Inequalities III (Ed. O. Shisha), pp. 159-175, Academic Press, New York.
[4] Strang, G. (1986). The simplex method and Karmarkar's method. In Introduction to Applied Mathematics pp. 673-691. Wellesley-Cambridge Press, Wellesley, Mass.
[5] Zeleny, M. (1986). An external reconstruction approach to linear programming. Computers and Operations Research, Vol. 13, pp. 95-100.
[6] Mitra, G., M. Tamiz, J. Yadegar. (1988). Experimental investigation of an interior search method within a simplex framework. Commans ACM, Vol. 31, pp. 1474-1482.
[7] Snyman, J. A. (1990). An Interior Feasible Direction Method with Constraint Projections for Linear Programming, Computers & Mathematics with Applications, Vol. 20, No. 12, pp. 43-54.
[8] Zoutendijk, G. (1960). Methods of Feasible Directions: A Study in Linear and Nonlinear Programming, Elsevier, Amsterdam and D Van Nostrand, Princeton, N.J.
[9] Rosen, J. B. (1960). The gradient projection method for nonlinear programming, Part I, Linear constraints. SIAM J. Appl. Math, Vol. 8, pp. 181-217.
[10] Wolfe, P. (1967). Methods of nonlinear programming. In Nonlinear Programming (Ed. J. Abadie), pp. 97-131. North-Holland, Amsterdam.
[11] Zangwill, W. I. (1967). The Convex Simplex Method. Mgmt. Sci. Vol. 14, pp. 221-283.
[12] Diniz-Ehrhardt M.A., M.A. Gomes-Ruggiero; J.M. Martinez; S.A. Santos, (2004). Augmented Lagrangian Algorithms Based on the Spectral Projected Gradient Method for Solving Nonlinear Programming Problems. Journal of optimization theory and applications, Vol. 123, No. 3, pp. 497–517.
[13] Calamai P.H., J.J. Mori. (1987). Projected Gradient Methods For Linearly Constrained Problems. Mathematical Programming, Vol. 39, pp. 93-116.
[14] Bertsekas, D.P. (1982). Projected Newton Methods For Optimization Problems With Simple Constraints. Siam J. Control and Optimization, Vol. 20. No. 2, pp. 221-246.
[15] Dussault J.P., G. Fournier, (1993). Technical Note on the Convergence of the Projected Gradient Method. Journal of Optimization Theory and Applications: Vol. 77, No. 1, pp. 197-208.
[16] Rosen J.B. (1961). The Gradient Projection Method for Nonlinear Programming. Part II. Nonlinear Constraints. J. Soc. Indust. Appl. Math., Vol. 9, No. 4, pp. 514-532.
[17] نورمحمدی، ح. (1388). بررسی روش زوتندیک در مسایل برنامهریزی خطی، مجله ریاضیات کاربردی، سال ششم، شماره ٢٣ ، ص ص ٧٢-69.
[18] Hintermuller, M., K. Ito, K. Kunisch, (2003). The Primal-Dual Active Set Strategy as a Semismooth Newton Method, Siam J. Optim., Vol. 13, No. 3, pp. 865–888.
[19] Andreani, R.; J.J. Júdice; J.M. Martínez; J. Patrício, (2011). A projected–gradient interior–point algorithm for complementarity problems, Numerical Algorithms, Vol. 57, pp. 457–485.
[20] Grana Drummond, L.M. (2004). A Projected Gradient Method for Vector Optimization Problems. Computational Optimization and Applications, Vol. 28, pp. 5–29.
[21] Potra, F.A.; S.J. Wright, (2000). Interior-Point Methods, Journal of Computational and Applied Mathematics, Vol. 124, pp. 281-302.
[22] Gondzio, J. (2012). Interior Point Methods 25 Years Later, European Journal of Operational Research, Vol. 218, pp. 587–601.
[23] Xiao, Y-H.; Q-J. Hu, Z. Wei, (2011). Modified Active Set Projected Spectral Gradient Method For Bound Constrained Optimization, Applied Mathematical Modeling, 35, 3117–3127
[24] Deza, A.; E. Nematollahi; R. Peyghami; T. Terlaky, (2006). The Central Path Visits All The Vertices Of The Klee–Minty Cube, Optimization Methods and Software, Vol. 21, No. 5, pp. 851–865.
[25] Deza, A.; E. Nematollahi; T. Terlaky, (2008). "How Good Are Interior Point Methods? Klee–Minty Cubes Tighten Iteration-Complexity Bounds". Mathematical Programming, Vol. 113 (1), pp. 1–14.
[26] Hillier, F.S.; G.J. Lieberman, (2010). “Introduction to Operations Research”, 9th Edition, McGraw-Hill, New York, United States, pp. 142-143.
[27] Birgin, E.G.; J.M. Martinez, (2002). Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients, Computational Optimization and Applications, 22, 101–125.
[28] Andretta, M.; E.G. Birgin; J.M. Martinez, (2010). Partial spectral projected gradient method with active-set strategy for linearly constrained optimization, Numerical Algorithms 53(1):23-52.