بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه

نوع مقاله : مقاله کامپیوتر

نویسندگان

1 مهندسی کامپیوتر، دانشگاه رهجویان دانش برازجان، بوشهر، ایران

2 گروه مهندسی کامپیوتر-نرم افزار، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران

3 گروه مهندسی کامپیوتر-نرم افزار، واحد بوشهر، دانشگاه آزاد اسلامی، برازجان، ایران

چکیده

امروزه استفاده از سیستم‌های هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستم‌ها می‌توانند به کاهش خطایی که ممکن است توسط کارشناسان
کم‌تجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستم‌های هوشمند مصنوعی در پیش‌بینی و تشخیص سرطان سینه که یکی از رایج‌ترین سرطان‌ها در بین زنان است، مورد توجه می‌باشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحله‌ای انجام می‌شود. در مرحله اول دو پارامتر ویژگی‌های موثر و تعداد نودهای لایه مخفی به منظور آموزش شبکه عصبی MLP به صورت همزمان توسط یک الگوریتم ژنتیک بهینه‌سازی می‌شوند. سپس با استفاده از ویژگی-های انتخاب شده و تعداد نودهای لایه مخفی، یک مدل طبقه‌بندی برمبنای شبکه عصبی MLP برای تشخیص بیماری سرطان سینه در مرحله دوم ایجاد می‌شود. در این مرحله از یک الگوریتم ژنتیک موازی FinGrain بر مبنای پارامترهای بهینه‌سازی شده، برای تنظیم وزن‌های شبکه عصبی MLP استفاده می‌شود. ارزیابی آزمایش‌ها نشان می‌دهد که روش پیشنهادی در مقایسه با روش‌های GAANN و CAFS روی مجموعه‌داده WBCD به نتایج بهتری رسیده است و دقت 98.72% را در حالت میانگین گزارش می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of MLP Neural Network Using the FinGrain Parallel Genetic Algorithm for Breast Cancer Diagnosis

نویسندگان [English]

  • Amin Rezaeipanah 1
  • Ali Mobaraki 2
  • saeed Bahrani Khademi 3
1 Department of Computer, University of Rahjuyan Danesh Borazjan, Bushehr, Iran
2 Department of Computer Engineering-Software, Bushehr Branch, Islamic Azad University, Bushehr, Iran
3 Department of Computer Engineering-Software, Bushehr Borazjan, Islamic Azad University, Borazjan, Iran
چکیده [English]

Today, the use of intelligent systems in medical diagnosis is gradually increasing. These systems lead to a reduction in error, which may be experienced by inexperienced experts. In this study, the use of artificial intelligent systems in predicting and diagnosing breast cancer, which is one of the most common cancers among women, is being considered. In this research, the diagnosis of breast cancer is performed with a two-stage approach. In the first step, the two parameters of the effective properties and the number of secret layer nodes for optimizing the MLP neural network are simultaneously optimized by a genetic algorithm. Then, using selected features and number of hidden layer nodes, a MLP neural network modeling model is developed for diagnosis of breast cancer in the second step. Here, a FinGrain parallels genetic algorithm based on optimized parameters is used to adjust the weight of the MLP neural network. The evaluation of the experiments shows that the proposed method compared to the two GAANN and CAFS methods on the WBCD dataset yielded better results and reported an accuracy of 98.72% in the average time.

کلیدواژه‌ها [English]

  • Parallel Genetic Algorithm
  • FineGrain Technique
  • MLP Neural Network
  • Breast Cancer Diagnosis
  • Effective features
 
[1] L. Al Shalabi, and Z. Shaaban, “Normalization as a preprocessing engine for data mining and the approach of preference matrix”, In Dependability of Computer Systems, 2006. DepCos-RELCOMEX'06. International Conference on (pp. 207-214). IEEE.
[2] D. J. Slamon, G. Clark, S. Wong, W. Levin, A. Ullrich, and W. McGuire, “Human breast cancer”, correlation of relapse and. Science, Vol. 3798106, NO.177, pp.1987, 235.
[3] A. Valachis, and C. Nilsson, “Cardiac risk in the treatment of breast cancer: assessment and management”, Breast Cancer: Targets and Therapy, Vol. 7, 2015 ,p. 21.
[4] M. Nesrine, B. Mehdi, E. B. Houda, L. Soumaya, A. Mehdi, Z. Bechir, and B. Hamouda, “First site of recurrence after breast cancer adjuvant treatment in the era of multimodality therapy: which imaging for which patient during follow-up?,” Breast disease, (Preprint), 2018 pp. 1-10.
[5] National Comprehensive Cancer Network, “Breast cancer Clinical Practice Guidelines in Oncology”, Journal of the National Comprehensive Cancer Network: JNCCN, Vol. 1, NO. 2, 2013, p. 148.
[6] زهرا مروج و جواد آذرخش، "شبیه سازی و طبقه بندی وقایع کیفیت توان با استفاده از شبکه عصبی"، فصلنامه مدل سازی در مهندسی، دوره 13، شماره 41، تابستان 1394، صفحه 137-146.
 [7] فرشاد حکیم پور، سیامک طلعت اهری و ابوالفضل رنجبر، "ارزیابی و مقایسه الگوریتم های بهینه سازی ژنتیک، شبیه سازی تبرید و فاخته ها در مکان یابی رقابتی تسهیلات (مطالعه موردی: بانکها)"،  فصلنامه مدل سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 231-246.
[8] فاطمه کریمی زاد گوهری و اکبر شاهسوند، "مقایسه نتایج حاصل از شبکه های عصبی MLP و RBF در پیش بینی نتایج حاصل از همزمانی پدیده های انتقال جرم و انتقال حرارت"،  فصلنامه مدل سازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 27-43.
[9] Y. S. Cho, C. L. Chin, and K. C. Wang, “Based on fuzzy linear discriminant analysis for breast cancer mammography analysis”, In Technologies and Applications of Artificial Intelligence (TAAI), November 2011, pp. 57-61, IEEE.
[10] D. A. Schauer, and O. W. Linton, “National Council on Radiation Protection and Measurements report shows substantial medical exposure increase”, Bethesda, 2009, pp. 293-29. IEEE.
[11] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008”, International journal of cancer, Vol. 127, NO. 12, 2010, pp. 2893-2917.
[12] S. K. Mandal, “Performance Analysis Of Data Mining Algorithms For Breast Cancer Cell Detection Using Naïve Bayes, Logistic Regression and Decision Tree”, International Journal Of Engineering And Computer Science, Vol. 6, NO. 2, 2017, pp. 20388-20391.
[13] R. Sheikhpour, M. A. Sarram, and R. Sheikhpour, “Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer”, Applied Soft Computing, Vol. 40, 2016, pp. 113-131.
[14] R. Shen, Y. Yang, and F. Shao, “Intelligent breast cancer prediction model using data mining techniques”, In Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 1, August 2014, pp. 384-387, IEEE.
[15] M. Ghoussaini, O. Fletcher, K. Michailidou, C. Turnbull, M. K. Schmidt, E. Dicks, and C. Baynes, “Genome-wide association analysis identifies three new breast cancer susceptibility loci”, Nature genetics, Vol. 44, NO. 3, 2012, p. 312.
[16] P. S. Pawar, and D. R. Patil, “Breast cancer detection using neural network models”, In Communication Systems and Network Technologies (CSNT), April 2013, pp. 568-572, IEEE.
[17] M. Nilashi, O. Ibrahim, H. Ahmadi, and L. Shahmoradi, “A knowledge-based system for breast cancer classification using fuzzy logic method”, Telematics and Informatics, Vol. 34, NO. 4, 2017, pp. 133-144.
[18] R. D. H. Devi, and M. I. Devi, “Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer”, Int J Adv Engg Tech/Vol. VII/Issue II/April-June, Vol. 93, 2016, p. 98.
[19] K. J. Wang, B. Makond, K. H. Chen, and K. M. Wang, “A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients”, Applied Soft Computing, Vol. 20, 2016, pp. 15-24.
[20] D. E. Goldberg, “Genetic and evolutionary algorithms come of age”, Communications of the ACM, Vol. 37, NO. 3, 1994, pp. 113-120.
[21] Breast Cancer Wisconsin (Original) dataset, UCI machine language repository, 1992.
[22] F. Ahmad, N. A. M. Isa, Z. Hussain, M. K. Osman, and S. N. Sulaiman, “A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer”, Pattern Analysis and Applications, Vol. 18, NO. 4, 2015, pp. 861-870.
[23] N. M. Kabir, N. M. Islam, and K. Murase, “A new wrapper feature selection approach using neural network”, Neurocomputing Vol. 73, NO. 16, 2010, pp. 3273–3283.
[24] A. Onan, “A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer”, Expert Systems with Applications, Vol. 42, NO. 20, 2015, pp. 6844-6852.
[25] Y. Peng, Z. Wu, and J. Jiang, “A novel feature selection approach for biomedical data classification”, J Biomed Inform, Vol. 43, NO. 1, 2010, pp. 15–23.
[26] A. Marcano-Ceden˜o, J. Quintanilla-Domı´nguez, and D. Andina, “WBCD breast cancer database classification applying artificial metaplasticity neural network, Expert Syst Appl Vol. 38, NO. 8, 2011, pp. 9573–9579.
[27] M. Karabatak, and M. C. Ince, “An expert system for detection of breast cancer based on association rules and neural network”, Expert Syst Appl, Vol. 36 NO. 2, 2009, pp. 3465–3469.
[28] G. I. Salama, M. B. Abdelhalim, and M. A. Zeid, “Experimental comparison of classifiers for breast cancer diagnosis”, In Computer Engineering & Systems (ICCES), November 2010, pp. 180-185, IEEE.
[29] R. Stoean, and C. Stoean, “Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection”, Expert Syst Appl, Vol. 40, NO. 7, 2013, pp. 2677–2686.
[30] V. Chaurasia, and S. Pal, “A novel approach for breast cancer detection using data mining techniques”, International Journal of Innovative Research in Computer and Communication Engineering, Vol. 2, NO. 1, 2017.
[31] M. Nilashi, O. Ibrahim, H. Ahmadi, and L. Shahmoradi, “A knowledge-based system for breast cancer classification using fuzzy logic method”, Telematics and Informatics, Vol. 34, NO. 4, 2017, pp. 133-144.
[32] H. Wang, B. Zheng, S. W. Yoon, and H. S. Ko, “A support vector machine-based ensemble algorithm for breast cancer diagnosis”, European Journal of Operational Research, Vol. 267, NO. 2, 2018, pp. 687-699.
[33] B. Zheng, S. W. Yoon, and S. S. Lam, “Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms”, Expert Systems with Applications, Vol. 41, NO. 4, 2014, pp. 1476-1482.
[34] Y. Prasad, K. K. Biswas, and C. K. Jain, “SVM classifier based feature selection using GA, ACO and PSO for siRNA design”, In International conference in swarm intelligence (pp. 307-314), 2010, Springer, Berlin, Heidelberg.
[35] S. M. H. Bamakan, and P. Gholami, ”A novel feature selection method based on an integrated data envelopment analysis and entropy model”, Procedia Computer Science, Vol. 31, pp. 632-638.