بهینه‌سازی چند هدفه توسط الگوریتم ژنتیک برای افزایش انتقال حرارت در میکرومبدلهای حرارتی

نوع مقاله : مقاله شیمی

نویسنده

گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه کردستان، سنندج، ایران

10.22075/jme.2019.16308.1615

چکیده

در این تحقیق بهینهسازی انتقال حرارت در میکرولولههای منحنیشکل توسط روش بهینه‌سازی چند هدفه مبتنی بر الگوریتم ژنتیک مورد بررسی قرار گرفته است. میزان انتقال حرارت و افت فشار سیال در میکرولولههای مارپیچ با ابعاد هندسی متفاوت (شامل شعاع انحنا و طول مستقیم بین خمها) بصورت آزمایشگاهی اندازهگیری شد. با استفاده از دادههای آزمایشگاهی، اعداد بدون بعد شامل: عدد ناسلت و ضریب اصطکاک برای تحلیل و بهینهسازی نتایج، محاسبه شدند. ثوابت دو معادله تجربی برای تخمین عدد ناسلت و ضریب اصطکاک با دقت مناسب، توسط تکنیک الگوریتم ژنتیک تعیین گردیدند. نتایج بیانگر خطای نسبی 49/7 درصد برای تخمین عدد ناسلت و 76/9 درصد برای پیشبینی ضریب اصطکاک می‌باشند. در نهایت این دو معادله تجربی جهت تعریف توابع هدف در بهینه‌سازی چندهدفه مبتنی بر الگوریتم ژنتیک بکار گرفته شده و نتایج بهینه‌سازی شامل مجموعه پارتو ارائه شدند. نتایج بهینهسازی شامل ابعاد هندسی مناسب برای میکروکانالهای مورد بررسی جهت طراحی مبدلهای حرارتی میکروکانالی میباشند.

کلیدواژه‌ها


عنوان مقاله [English]

Heat transfer enhancement in micro heat exchangers using genetic algorithm based multi-objective optimization

نویسنده [English]

  • Reza Beigzadeh
Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In this study, the optimization of heat transfer in serpentine micro heat exchangers using the genetic algorithm based multi-objective optimization was investigated. The effects of geometric parameters of the serpentine microchannels including curvature radius and straight length between the bends on friction factor (f) and Nusselt number (Nu) were investigated experimentally. As was expected, increasing the heat transfer rate and pressure drop occurs simultaneously, which leads to the more energy required for pumping. Hence, both phenomena should be considered at the same time. The constants of two empirical equations for estimating Nusselt number and friction factor were obtained by the genetic algorithm searching method. The mean relative error of 7.49% and 9.76% were calculated for Nu and f correlation, respectively. These empirical equations were employed in two objective functions for genetic algorithm based multi-objective optimization. The optimum geometrical parameters of the investigated serpentine microchannels which lead to a trade-off between heat transfer and pressure drop were presented.

کلیدواژه‌ها [English]

  • Heat transfer
  • Genetic algorithm
  • Optimization
  • Micro heat exchanger
  • Curved microtube
  • Pareto set
[1] L. Yin, P. Jiang, R. Xu, H. Hu and L. Jia, "Heat transfer and pressure drop characteristics of water flow boiling in open microchannels", International Journal of Heat and Mass Transfer, Vol. 137, 2019, pp. 204–215.
[2] D. Deng, Y. Xie, L. Chen, G. Pi and Y. Huang, "Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling", Energy, Vol. 181, 2019, pp. 954–963.
[3] B. Aghel, E. Heidaryan, S. Sahraie and S. Mir, "Application of the microchannel reactor to carbon dioxide absorption", Journal of Cleaner Production, Vol. 231, 2019, pp. 723–732.
[4] N. Yasvanthrajan, A. Nabera, S. Salike, D.T. Valan, P. Sivakumar, K. Muthukumar and A. Arunagiri, "An overview on the process intensification of microchannel reactors for biodiesel production", Chemical Engineering and Processing-Process Intensification, Vol. 136, 2019, pp. 163–176.
[5] J.J. Brandner, E. Anurjew, L. Bohn, E. Hansjosten, T. Henning, U. Schygulla, A. Wenka and K. Schubert, "Concepts and Realization ofmicrostructure heat exchangers for enhanced heat transfer", Experimental Thermal and Fluid Science, Vol. 30, 2006, pp. 801–809.
[6] J.J. Brandner, T. Gietzelt, T. Henning, M. Kraut, H. Moritz and W. Pfleging, "Advanced Micro– and Nanosystems" Vol. 5: Micro Process Engineering. Wiley–VCH, Weinheim, Germany, 2006, pp. 267–320.
[7] M.I. Hasan, A.A. Rageba, M. Yaghoubi and H. Homayoni, "Influence of channel geometry on the performance of a counter flow microchannel heat exchanger", International Journal of Thermal Sciences, Vol. 48, 2009, pp. 1607–1618.
[8] M.A. Al–Nimr, M. Muqableh, A.F. Khadrawi and S.A. Ammourah, "Fully developed thermal behaviors for parallel flow microchannel heat exchanger", International Communications in Heat and Mass Transfer, Vol. 36, 2009, pp. 385–390.
[9] W.H. Yang, J.Z. Zhang and H.E. Cheng, "The study of flow characteristics of curved microchannel", Applied Thermal Engineering, Vol. 25, 2005, pp. 1894–1907.
[10] J.C. Chu, J.T. Teng , T.T. Xu , S. Huang , S. Jin , X.F. Yu ,T. Dang , C.P. Zhang and R. Greif, "Characterization of frictional pressure drop of liquid flow through curved rectangular microchannels", Experimental Thermal and Fluid Science, Vol. 38, 2012, pp. 171–183.
[11] C.M. Karale, S.S. Bhagwat and V.V. Ranade, "Flow and Heat Transfer in Serpentine Channels", AIChE Journal, Vol. 59, 2013, pp. 1814–1827.
[12] Z. Zheng, D.F. Fletcher and B.S. Haynes, "Laminar heat transfer simulations for periodic zigzag semicircular channels: Chaotic advection and geometric effects", International Journal of Heat and Mass Transfer, Vol. 62, 2013, pp. 391–401.
[13] Z. Zheng, D.F. Fletcher and B.S. Haynes, "Chaotic advection in steady laminar heat transfer simulations: Periodic zigzag channels with square cross–sections", International Journal of Heat and Mass Transfer, Vol. 57, 2013, pp. 274–284.
[14] Zheng, Z., D.F. Fletcher and B.S. Haynes, "Transient laminar heat transfer simulations in periodic zigzag channels", International Journal of Heat and Mass Transfer, Vol. 71, 2014, pp. 758–768.
[ 15 ،» مدلسازی و شبیهسازی راهبردهای بهینة مدیریت انرژی در خودروی هیبرید پیل سوختی « ، [ سامان احمدی و محمدتقی بطحایی
مجله مدلسازی در مهندسی، دوره 15 ، شماره 50 ، پاییز 1396 ، صفحه 1 - 16.
[ 16 ارائه مدلی جهت زمانبندی تولید و حملونقل قطعات در صنعت خودرو )مطالعه موردی: شرکت « ، [ محمدعلی بهشتینیا و میلاد نوذری
مجله مدلسازی در مهندسی، دوره ،») ایران خودرو 16 ، شماره 52 ، بهار 1397 ، صفحه 299 - 309 .
[ 17 طراحی کنترلر بهینة فشار در یک تونل باد « ، [ مهرداد بزاززاده، مجتبی دهقان منشادی، امین نظریان شهربابکی و علی شهریاری
مجله مدلسازی در مهندسی، دوره ،» فراصوت دمشی با استفاده از الگوریتم ژنتیک 14 ، شماره 47 ، زمستان 1395 ، صفحه 155 - 169.
[18] L. Gosselin, M. Tye–Gingras and F. Mathieu–Potvin, "Review of utilization of genetic algorithms in heat transfer problems", International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 2169–2188.
[19] H. Najafi, B. Najafi and P. Hoseinpoori, "Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm", Applied Thermal Engineering, Vol. 31, 2011, pp. 1839–1847.
[20] L. Momayez, P. Dupont, G. Delacourt, O. Lottin and H. Peerhossaini, "Genetic algorithm based correlations for heat transfer calculation on concave surfaces", Applied Thermal Engineering, Vol. 29, 2009, pp. 3476–3481.
[21] J. Holland, Adaptation in Natural and Artificial System, University of Michigan Press, Ann Arbor, 1975.
[22] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison– Wesley Longman, Inc, 2000.
[23] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.
[24] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley and Sons, Inc., New York, 1997.
[ 25 [ علیرضا رضایی و سجاد رنجبران، آموزش کاربردی الگوریتم ژنتیک و فازی در نرمافزار MATLAB ، انتشارات کتاب پدیده و فرهنگ
متین، ایران، 1388 .
[26] H. Khosravi-Bizhaem, A. Abbassi and A.Z. Ravan, "Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: An experimental study", Applied Thermal Engineering, 2019, In Press.
[27] S. Huang, H. Chen, X. Zhang, Z. Wan and Y. Tang, "Experimental evaluation of thermal performance in a circular tube with Y-branch insert", International Communications in Heat and Mass Transfer, Vol. 106, 2019, pp. 15–21.
[28] T. Ambreen and M.H. Kim, "Heat transfer and pressure drop correlations of nanofluids: a state of art review", Renewable and Sustainable Energy Reviews, Vol. 91, 2018, pp. 564–583.