مدل‌سازی لاگرانژی سه بعدی جریانهای تراکم ناپذیر لزج و غیرلزج با استفاده از حلگرهای ریمن پایستار و ناپایستار و اصلاح چگالی

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مهندسی دریا،مجتمع مکانیک،دانشگاه صنعتی مالک اشتر، شاهین شهر

2 گروه مهندسی دریا، مجتمع مکانیک، دانشگاه صنعتی مالک اشتر،شاهین شهر

چکیده

در این مقاله، شبیه‌سازی سه بعدی جریان به صورت لاگرانژی با روش هیدرودینامیک ذرات هموار نسبتاً تراکم‌پذیر انجام شده است. از معادلات ناویر-استوکس و معادلات اویلر به عنوان معادلات مومنتوم به ترتیب برای جریان لزج و غیرلزج استفاده شد. جریان در سه حالت غیرلزج، لزجت مصنوعی و لزجت لایه ای همراه با مدل آشفتگی SPS مدل‌سازی شده است. گرچه روش لاگرانژی فوق برای مدل‌سازی سطوح آزاد مناسب است اما نوسانات شدید و غیرواقعی در میدان فشار و سرعت، یکی از مشکلات عمده در این روش است. در این مقاله، اثر استفاده از فیلتر چگالی و حلگرهای ریمن پایستار و ناپایستار بر نوسانات میدان فشار و سرعت تحقیق شده و نوآوری آن ارائه ترکیبی مناسب از موارد فوق برای اصلاح این نوسانات و درنتیجه بالا رفتن دقت نتایج نیروی برخورد است. فیلتر چگالی در حالت‌های جریان با لزجت مصنوعی و لزجت لایه ای با آشفتگی استفاده شده است. ریمن پایستار برای جریان غیر لزج و ریمن ناپایستار برای جریان با لزجت لایه‌ای و آشفته بکار رفته‌اند. به علاوه اصلاح گرادیان کرنل نیز در کنار ریمن ناپایستار استفاده شده است. مقایسه این نتایج نشان داد که حلگر ریمن در حالت پایستار و ناپایستار به علت تصحیح فشار و سرعت عملکرد خوبی در کنترل نوسانات میدان فشار و سرعت داشته است. اما استفاده از فیلتر چگالی که به طور غیر مستقیم و تنها فشار را تصحیح می‌کند، نتایج قانع کننده ای نداشت. در نهایت معتبر سازی نتایج سطح آزاد نیز با بهترین روش از لحاظ نتایج فشار و سرعت انجام شد.

کلیدواژه‌ها


عنوان مقاله [English]

3D Lagrangian Modelling of Viscous and Inviscid incompressible Flow Using Conservative and Non-conservative Riemann Solvers and Density Filtering

نویسندگان [English]

  • Mahmoud Rostami-Varnousfaaderani 1
  • Mohammad Hadi Shabani 2
1 Marine Engineering Department,Mechanics Faculty,Malek-Ashtar University of Technology
2 Marine Engineering Department ,Mechanics Faculty, Malek-Ashtar University of Technology, Shahin-Shahr
چکیده [English]

In this paper, 3D numerical lagrangian modelling of flow was performed using Weakly Compressible Smoothed Particle Hydrodynamic (WCSPH) method. Navier Stokes and Euler Equations were used to simulate viscous and inviscid fluid flow respectively. The fluid flow was assumed in three forms of inviscid, with artificial viscosity and viscous fluid flow with turbulence. Although the WCSPH method is acceptable for simulating of free surface, but has a major problem of large and non-physical oscillations in pressure and velocity field. In this paper the effect of density filtering, conservative and non-conservative Riemann solvers were studied for correction of pressure and velocity of WCSPH results. Furthermore due to using of laminar and SPS turbulence method with non-conservative Riemann, the effect of using kernel gradient correction was also studied. Therefore five numerical methods were introduced for simulating 3D incompressible fluid flow. The results of these numerical models were compared with experimental data. The comparison showed that using Riemann solvers and especially non-conservative Riemann solver with kernel gradient correction gives acceptable results for pressure and velocity field of numerical results. Finally the validation of numerical model was also performed for the variation of free surface.

کلیدواژه‌ها [English]

  • Lagrangian simulatio
  • وViscous and inviscid flow
  • Riemann Solvers
  • Density filtering
  • Free surface
 
[1] قربان مهتابی، میترا ملازاده و فرزین سلماسی، «کاربرد شبیه‌سازی عددی در تعیین موقعیت و ابعاد سوراخ آب (Weep Hole) کانال بتنی تحت ترازهای مختلف آب‌زیرزمینی»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 55، 1397، صفحة 267-278.
[2] محمّدمحسن شاه مردان، محمود نوروزی و امین شهبانی ظهیری نسایی، «بررسی عددی تأثیر گردابه‌ها بر روی افت فشار و تلفات جریان در داخل کانال با انبساط تدریجی صفحه‌ای»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 48، 1396، صفحة 45-60.
[3] مهدی اژدری مقدّم، مهنا تاج‏ نسایی و مهنا تاج‏ نسایی، «مدل‏سازی عددی سلّول‏های جریان ثانویه در کانال‏های ذوزنقه‏ای با زبری یکنواخت»، مجلة مدل‌سازی در مهندسی، دورة 8، شمارة 20، 1389، صفحة 57-70.
[4] داود طغرایی سمیرمی و شیرین میرفروغی، شیرین، «بررسی عددی انتقال حرارت آمیخته نانوسیال با خواص متغیّر داخل حفرة مستطیلی کم‌عمق با درپوش متحرّک»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 55، 1397، صفحة 350-377.
[5] محمّد شریفی اصل، داود طغرایی و احمدرضا عظیمیان، «شبیه‌سازی عددی انتقال حرارت جابه‌جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لولة افقی مدوّر»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 53، 1397، صفحة 113-120.
[6] X. Deng, H. Liu and S. Lu, "Analytical Study of Dam-Break Wave Tip Regio", Journal of Hydraulic Engineering, 144(5), 2018, p. 04018015
[7] P. Jančík and T. Hyhlík, "Pressure evaluation during dam break using weakly compressible SPH", in Experimental Fluid Mechanics 2018, edited by P. Dančová and J. Novosád (Technická univerzita Liberec, Liberec), 2018, pp. 219–224
[8] H. Chanson, "Tsunami surges on dry coastal plains: application of dam break equations", Coastal Engineering Journal, Vol. 48, No. 4, 2006, pp. 355-370.
[9] J.J. Monaghan, "Simulating Free Surface Flows with SPH", Journal of Computational Physics, No. 110, 1994, pp. 399-406.
[10] A. Crespo, M. Gomez-Gesteira and R.A. Dalrymple, "Modeling dam break behavior over a wet bed by a SPH technique", Journal of Waterway Port and Coast Ocean Engineering, Vol. 134, No. 6, 2008, p. 313–320.
[11] R.A. Dalrymple and B.D. Rogers, "Numerical Modeling of Water Waves with the SPH Method", Coastal Engineering, Vol. 2–3, No. 53, 2006, p. 141–147.
[12] M. Rostami Varnousfaaderani and M.J. Ketabdari, "Numerical simulation of plunging wave breaker impact by a modified Turbulent WCSPH method", Journal of Brazilian Soiety of Mechanical Sciences and Engineering., Vol. 37, No. 2, 2015, pp. 507-523.
[13] M. Gomez-Gesteira and R.A. Dalrymple, "Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure", Journal of Waterway Port and Coast Ocean Engineering, Vol. 130, 2004, pp. 63-69.
[14] J.J. Monaghan and A. Kos, "Solitary Waves on a Cretan Beach", Journal of Waterway Port and Coast Ocean Engineering, Vol. 3, No. 125,1999, pp. 145-155.
[15] A. Colagrossi and M. Landrini, "Numerical simulation of interfacial flows by smoothed particle hydrodynamics", Journal of Computational Physics, No. 191, 2003, pp. 448–475.
[16] J.J. Monaghan, "On the Problem of Penetration in Particle Methods", Journal of Computational Physics, No. 82, 1989, pp. 1-15.
[17] J.J. Monaghan, "Smoothed particle hydrodynamics", Reports on Progress in Physics , No. 68, 2005, pp. 1703–1759.
[18] J.-P. Vila , "On particle weighted methods and Smooth Particle Hydrodynamics", Mathematical Models and Methods in Applied Sciences, Vol. 9, No. 2, 1999, pp. 161–209.
[19] B.D. Rogers, R.A. Dalrymple and P.K. Stansby, "Simulation of caisson breakwater movement using 2-D SPH", Journal of Hydraulic Research, Vol. 48, 2010, pp. 135-141.
[20] M. GÓMEZ-GESTEIRA, "SPHERIC SPH benchmark test cases: Test 1 - Force exerted by a schematic 3D dam break on a square cylinder", 2006,  [Online], Available: http://cfd.mace.manchester.ac.uksph/TestCasesSPH_Test1.html.
[21] L.B. Lucy, "A numerical approach to the testing of the fission hypothesis", The Astronomical Journal, No. 84, 1977, pp. 1013-1024.
[22] R.A. Gingold and J.J. Monaghan, "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Monthly Notices of the Royal Astronomical Society, No. 181, 1977, pp. 375-389.
[23] J.J. Monaghan and J.C. Lattanzio, "A refined method for astrophysical problems", Astronomical Astrophysics, No. 149, 1985, pp. 135-143.
[24] J.J. Monaghan, "Smoothed Particle Hydrodynamics", Annual Review of Astronomy and Astrophysics , No. 30,1992, pp. 543-574.
[25] A. Parshikov and S. Medin, "Smoothed particle hydrodynamics using interparticle contact algorithm", Journal of Computational Physics, 180, 2002, pp. 358–382.
[26] A. Khayyer, H. Gotoh and S.D. Shao, "Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves", Coastal Engineering, 55, 2008, pp. 236–250.
[27] J. Bonet and T.-S. Lok, "Variational and momentum preservation aspects of smoothed particle hydrodynamic formulations", Computational Methods in Applied Mechanics, 180, 1999, pp. 97-115.
[28] B.D. Rogers and R.A. Dalrymple, "SPH modeling of tsunami waves", in Advances in Coastal and Ocean Engineering, Advanced Numerical Models for tsunami waves and runup edition, Vol. 10, World Scientific, 2008, pp. 75-100.
[29] J.D. Ramsden, "Tsunamis: forces on a vertical wall caused by long waves, bores, and surges on a dry bed", PhD Thesis, California Institute of Technology,1993.
[30] T. Al-Faesly, D. Palermo, I. Nistor and A. Cornett, "Experimental Modeling of Extreme Hydrodynamic Forces on Structural Models", International Journal of Protective Structures, Vol. 3, No. 4, 2012, pp. 477-505.
[31] K.M.T. Kleefsman, G. Fekken, A.E.P. Veldman, B. Iwanowsky and B. Buchner, "Volume-of-Fluid based simulation method for wave impact problems", Journal of Computational Physics, No. 206, 2005, pp. 363-393.