مدل‌سازی دروازه منطقی تمام نوری با شبکه‌های عصبی رگرسیون کلی و پیش بینی خطی

نوع مقاله : مقاله برق

نویسندگان

1 دانشکده مهندسی برق دانشگاه صنعتی شیراز

2 الکترونیک دانشکده مهندسی برق دانشگاه جهرم

چکیده

دروازه‌های منطقی تمام نوری اصلی‌ترین واحد در سیستم‌های پردازشی تمام نوری هستند. ارائه یک روش سریع و کارآمد برای مطالعه رفتار دروازه‌های منطقی تمام نوری با اهمیت بوده و همواره مورد توجه محققان قرار داشته است. در این مقاله از شبکه‌های عصبی رگرسیون کلی (GRNN) و پیش‌بینی خطی (Lin) برای مدلسازی خروجی دروازه منطقی تمام نوری XOR سه ورودی استفاده شده است. نتایج بدست آمده نشان می‌دهند هر دو روش به خوبی می‌توانند رفتار قطعه را مدل‌سازی کنند اما مدت زمان آموزش شبکه عصبی در روش پیش‌بینی خطی با ساختار بهینه حدود 93 ثانیه است که بسیار بیشتر از روش GRNN با مدت زمان آموزش 8 ثانیه می‌باشد. هر دو شبکه پس از آموزش می‌توانند خروجی دروازه مورد نظر را در مدت زمانی کمتر از 1 ثانیه پیش‌بینی نمایند. این زمان در مقایسه با زمان مورد نیاز برای محاسبه خروجی دروازه منطقی XOR که برابر با 12 ثانیه می‌باشد کاهش چشمگیری را در مدل‌سازی این افزاره نشان می‌دهد. در روش GRNN به ازای مقدار گستردگی 001/. بهترین پاسخ با مقادیر خطاهای MAE, RSE, MSE به ترتیب 7-10×97/1، 6-10×95/5 و 4-10×6/1 به دست آمده است. در روش پیش‌بینی خطی با مقدار آموزش اولیه 200 داده کمترین مقادیر خطاهای MAE, RSE, MSE به ترتیب 22-10×11/1 ، 16-10×14/2 و 11-10×11/2 و بهترین خروجی برای مدل‌سازی حاصل شده است. مقدار ضریب همبستگی(R2) بین مقادیر مدل‌سازی شده و مقادیر مطلوب خروجی دروازه منطقی مذکور برای هر دو روش شبکه عصبی برابر با یک می‌باشد که نشان دهنده پیش بینی بسیار خوب در این روش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modelling of All-optical 3-inputs XOR logical gates using artificial neural networks

نویسندگان [English]

  • samaneh hamedi 1
  • hamed Dehdashti Jahromi 2
1 Department of Electrical and electronics engineering
2 Faculty of Engineering, Jahrom University, Jahrom,
چکیده [English]

All-optical logic gates are the most important unit for achieving all-optical processing systems. Developing a fast and efficient method for studying the behavior of all-optical logic gates is very important and has been considered by researchers. In this paper, general regression neural networks and linear method are used to predict a three-input all-optical XOR logic gate output. The simulation results show that both methods can precisely model the behavior of the device. The training time of the neural network in the linear method with the optimal structure is about 93 seconds, which is much longer than the GRNN method with a training time of 8 seconds. Both models predict the output in less than 1 second which show a great improvement over the conventional method with 12 seconds. In the GRNN method with the smoothing factor of 0.001, the best results were obtained with MSE, RSE and MAE error values of 1.97×10-7, 5.95×10-6, and 1.6×10-4, respectively. In the linear method with 200 initial training data, the minimum values of MSE, RSE, and MAE are 1.11×10-22, 2.14×10-16 and 2.11×10-11, respectively, and the best modeled output is achieved. The value of correlation coefficient (R2) between the modeled output and the desired output of the logic gate is one for both neural network methods, which indicates a very good prediction for this method.

کلیدواژه‌ها [English]

  • neural networks
  • linear prediction
  • generalized regression neural network
  • all optical XOR gate
[1] E. Nasernia, M. Noori, and M. Rezaie, "Milling Tool Wear Prediction by Feed Motor Current Signal using MLPs and ANFIS," Aerospace Mechanics Journal, Vol. 15, No. 1, 2019, pp. 51-62.
[2] حمیدرضا میرشاهولد، رامین قاسمی اصل، ناهید رئوفی، مهرداد ملک زاده دیرین، "مدل سازی و پیش بینی نقطه اشتعال ترکیبات هیدرو کربنی با استفاده از شبکه عصبی". مدل سازی در مهندسی، دوره 64، شماره 19، اردیبهشت 1400، صفحه 109-116.
[3] H. Dehdashti Jahromi and S. Hamedi, "Artificial intelligence approach for calculating electronic and optical properties of nanocomposites," Materials Research Bulletin, Vol. 141, 2021, p. 111371.
[4] میثم عفتی، رحمت مدندوست، زینب فلاح زرجو بازکیایی، "ارزیابی عملکرد مدل های شبکه عصبی مصنوعی، نروفازی و رگرسیون چند متغیره در پیش بینی مقاومت فشاری بتن به کمک روش بارنقطه ای"، مدل سازی در مهندسی، دوره 18، شماره62، آبان 1399، صفحه 99-113.
[5] فاضل فصیحی، محمودرضا کی منش، سیدعلی صحاف، سهیل قره، "تعیین ضریب بار هم‌ارز مبتنی بر الگوریتم شبکه عصبی مصنوعی"، مدل سازی در مهندسی، دوره 19،  شماره 65، تیر 1400، صفحه 149-160.
[6] A. Maroosi, E. Zabbah, and H. Ataei Khabbaz, "Network Intrusion Detection using a combination of artificial neural networks in a hierarchical manner," Electronic and Cyber Defense, Vol. 8, No. 1, 2020, pp. 89-99.
[7] احسان برنجکار، "ارزیابی عملکرد شبکه‌های عصبی مصنوعی تلفیق شده با الگوریتم های فراابتکاری وال و مورچگان در تخمین نرخ نفوذ حفاری و مقایسه با شبکه های عصبی ساده و مدل های ریاضی مرسوم"، مدل سازی در مهندسی، دوره 19،  شماره 65، تیر1400، صفجه 115-135.
[8] M. Kaya and S. Hajimirza, "Application of artificial neural network for accelerated optimization of ultra-thin organic solar cells," Solar Energy, Vol. 165, 2018, pp. 159-166.
[9] S. Arya and Y. Ho Chung, "Artificial neural network estimation of data and channel characteristics in free-space ultraviolet communications," Applied Optics, Vol. 59, No. 13, 2020, pp. 386-3818.
[10] N. Farsad and A. Goldsmith, "Neural network detection of data sequences in communication systems," IEEE Transactions on Signal Processing, Vol. 66, No. 21, 2018, pp. 5663-5678.
[11] A. M. Hammond and R. M. Camacho, "Designing integrated photonic devices using artificial neural networks," Optics Express, Vol. 27, No. 21, 2019, pp. 29620-29638.
[12] E. Bor et al., "Integrated silicon photonic device design by attractor selection mechanism based on artificial neural networks: optical coupler and asymmetric light transmitter," Optics Express, Vol. 26, No. 22, 2018, pp. 29032-29044.
[13] Y. Ji, H. Wang, J. Cui, M. Yu, Z. Yang, and L. Bai, "All-optical signal processing technologies in flexible optical networks," Photonic Network Communications, Vol. 38, No. 1, 2019, pp. 14-36.
[14] A. Surendar, M. Asghari, and F. Mehdizadeh, "A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs," Photonic Network Communications, Vol. 38, No. 2, 2019, pp. 244-249.
[15] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, "A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs," Photonics and Nanostructures - Fundamentals and Applications, Vol. 34, 2019, pp. 19-23.
[16] A. Salimzadeh and H. Alipour-Banaei, "An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators," Optics communications, Vol. 410, 2018, pp. 793-798.
[17] Q. Liu, N. Li, and C. Tan, "All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields," Physical Review A, Vol. 101, No. 2, 2020, p. 023818.
[18] K. Safari-Anzabi, A. Habibzadeh-Sharif, M. J. Connelly, and A. Rostami, "Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach-Zehnder interferometer," Optics & Laser Technology, Vol. 135, 2021, p. 106628.
[19] F. Parandin, "Realization of Ultra-compact All-optical Universal NOR Gate on Photonic Crystal Platform," Journal of Electrical and Computer Engineering Innovations (JECEI), Vol. 9, No. 2, 2021, pp. 185-192.
[20] D. G. S. Rao, S. Swarnakar, V. Palacharla, K. S. R. Raju, and S. Kumar, "Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications," Photonic Network Communications, Vol. 41, No. 1, 2021, pp. 109-118.
[21] Y. Mao, B. Liu, R. Ullah, T. Sun, and L. Zhao, "All-optical XOR function accompanied with OOK/PSK format conversion with multicast functionality based on cascaded SOA configuration," Optics Communications, Vol. 466, 2020, p. 125421.
[22] V. Agarwal, R. Anurag, H. S. Ganesh, and Y. S. Ramaiah, "An Ultrafast all optical Encryption Decryption Scheme based on XOR logic for secure transmission in Optical Networks," in Journal of Physics: Conference Series, Vol. 1804, No. 1, 2021, p. 012187.
[23] H. D. Jahromi, A. Binaie, A. Zarifkar, and M. H. Sheikhi, "a new structure for all-optical three-input XOR logic gate based on semiconductor optical amplifier mach–zehnder interferometer," International Journal of Modern Physics B, Vol. 28, No. 07, 2014, p. 1450052.
[24] M. del Rosario Martinez-Blanco et al., Generalized regression neural networks with application in neutron spectrometry. InTech Croatia, 2016.
[25] M. Hariharan, L. S. Chee, and S. Yaacob, "Analysis of infant cry through weighted linear prediction cepstral coefficients and probabilistic neural network," Journal of medical systems, Vol. 36, No. 3, 2012, pp. 1309-1315.
[26] P. F. Baldi and K. Hornik, "Learning in linear neural networks: A survey," IEEE Transactions on neural networks, Vol. 6, No. 4, 1995, pp. 837-858.
[27] V. R. Balaji, M. Murugan, S. Robinson, R. J. O. Nakkeeran, and Q. Electronics, "Design and optimization of photonic crystal based eight channel dense wavelength division multiplexing demultiplexer using conjugate radiant neural network," Vol. 49, No. 5, 2017, pp. 1-15.
[28] D. Liu, Y. Tan, E. Khoram, and Z. J. A. P. Yu, "Training deep neural networks for the inverse design of nanophotonic structures," Vol. 5, No. 4, 2018, pp. 1365-1369.
[29] J. Peurifoy et al., "Nanophotonic particle simulation and inverse design using artificial neural networks," Vol. 4, No. 6, 2018, p. eaar4206.
[30] G. Alagappan and C. E. J. J. o. M. O. Png, "Modal classification in optical waveguides using deep learning," Vol. 66, No. 5, 2019, pp. 557-56.
[31] N. J. Anika and M. B. J. O. Mia, "Design and analysis of guided modes in photonic waveguides using optical neural network," Vol. 228, 2021, p. 165785.
[32] I. Sajedian, J. Kim, J. J. M. Rho, and nanoengineering, "Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks," Vol. 5, No. 1, 2019, pp. 1-8.
[33] G. Alagappan and C. E. J. J. B. Png, "Universal deep learning representation of effective refractive index for photonics channel waveguides," Vol. 36, No. 10, 2019, pp. 2636-2642.
[34] G. Alagappan, C. E. J. N. C. Png, and Applications, "Prediction of electromagnetic field patterns of optical waveguide using neural network," Vol. 33, No. 7, 2021, pp. 2195-2206.
[35] M. Chen, D. Pang, X. Chen, H. Yan, and P. J. P. Zhou, "Optimized Design of Multi-layer Nano-photonic Structures for Selective Absorption Applications by Artificial Neural Networks," Vol. 16, No. 3, 2021, pp. 653-659.