بررسی خواص الکترونیکی و مشخصه ی جریان بین لایه ای مواد دوبعدی نامتقارن MoSi2PmAsn و MoSi2AsmSbn

نوع مقاله : مقاله برق

نویسنده

گروه برق، دانشکده مهندسی، دانشگاه زنجان

چکیده

این مقاله‏‌ به بررسی خواص ساختاری و الکترونیکی مواد دو بعدی نامتقارن MoSi2PmAsn و MoSi2AsmSbn با استفاده از نظریه تابع چگالی می‌پردازد. در ابتدا، پایداری ساختارها توسط پراکندگی فونون اثبات شده است. در ادامه، ساختار نوارهای انرژی مواد به دست آمده است که نشان می‌دهد به جز ساختار MoSi2As3Sb، بقیه ساختارها ماهیت نیمه‌هادی دارند. همچنین چگالی حالت‌های ‌مبتنی بر اوربیتال نشان می‌دهد که نوار هدایت و ظرفیت همه ساختارها عمدتا از اوربیتال d اتم مولیبدن تشکیل شده است. به منظور اثبات وجود یک میدان الکتریکی عمودی ذاتی در این مواد، توزیع پتانسیل، توزیع بار و توابع کار در دو صفحه اتمی بالا و پایین ساختارها محاسبه و مورد تجزیه و تحلیل قرار گرفته است. در ادامه برای تنظیم خواص الکتریکی ساختارها، کرنش دومحوره داخل صفحه‌ای اعمال شده است. شکاف انرژی مواد در کرنش کوچکی به مقدار ماکزیمم خود می‌رسد، سپس در کرنش‌های بزرگتر کاهش یافته و در کرنش فشاری و کششی مشخصی به صفر می‌رسد و گذار از نیمه‌هادی به فلز روی می‌دهد. در انتها، ترابرد بین لایه‌ای در این مواد مورد مطالعه قرار گرفته است و جریان بین صفحه‌ای به دست آمده است. نتایج به دست آمده نشان می‌دهد که ترابرد بین لایه‌ای و در نتیجه میزان جریان عمودی به پیکربندی ساختار وابسته می‌باشد و در ساختار X3Yبیشترین جریان به دست می‌آید. نتایج به دست آمده و عدم تقارن ناشی از میدان داخلی در مقادیر جریان مثبت و منفی اثبات می‌کند که این مواد گزینه‌های مناسبی برای استفاده در ادوات نانوالکترونیک و به ویژه یکسوسازها می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Electronic Properties and Interlayer Current Characteristics of Janus two-dimensional MoSi2PmAsn and MoSi2AsmSbn

نویسنده [English]

  • Nayereh Ghobadi
Department of Electrical Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

In this work, the structural and electronic properties of Janus two-dimensional MoSi2PmAsn and MoSi2AsmSbn have been studied using density functional theory. Their stability is confirmed using phonon dispersion. The band structure of these materials shows that except MoSi2As3Sb, the rest of the materials are semiconductors. In the following, the projected density of states is studied and the contribution of orbitals to the conduction and valence band has been explored, where both the valence and conduction bands edges are dominated by the d-orbital of Mo atoms. The electrostatic potential distribution, the charge analysis, and surface work function difference confirm that there is an internal vertical electric field in these structures. In order to adjust the electrical properties of these structures, in-plane biaxial strain is applied. The bandgaps exhibit a maximum at a small compressive or tensile strain. Then the bandgaps decrease at large compressive and tensile strains and semiconductor to metal transition occurs at specific strains. Finally, the interlayer transport in these materials is investigated and the interlayer current is obtained. The results show that the interlayer transport and vertical current depend on the configuration of the group V atoms and the X3Y structure exhibits the largest current. The results and the asymmetry caused by the internal field in positive and negative current values, prove that these materials are promising candidates for application in nanoelectronic devices, especially rectifiers.

کلیدواژه‌ها [English]

  • Two-dimensional materials
  • Janus materials
  • In-Plane Biaxial Strain
  • Interlayer current
  • Density functional theory
[1] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, No. 5696, 2004, pp. 666-669.
[2] مهدیه نیری و مریم نیری،  "طراحی و شبیه سازی مدار جمع کننده پنج ارزشی جدید مبتنی بر ترانزیستور نانو نوار گرافن"، نشریه مدل‌سازی در مهندسی، دوره 18 ، شماره 63، زمستان 1399، صفحه 41-50.
[3] مهناز ذاکری و امید افضل نژاد، "بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره به کمک روش اجزا محدود "، نشریه مدل‌سازی در مهندسی، دوره 15 ، شماره 48 ، بهار 1396 ، صفحه 61-71.
[4] بهروز عبدی تهنه و علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونل‌زنی با دوپینگ خطی در ناحیه درین:  شبیه سازی عددی کوانتومی "، نشریه مدل‌سازی در مهندسی، دوره 16 ، شماره 52 ، بهار 1397 ، صفحه  117-109.
[5] رضیه السادات حسینی المدواری، مریم نیری، سمیه فتوحی، "مطالعه خواص الکترونیکی و نوری تک‌لایه سولفید گالیم آلایش شده با محاسبات اصول اولیه "، نشریه مدل‌سازی در مهندسی، دوره 20 ، شماره 68 ، بهار 1401 ، صفحه 47-58.
[6] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides”, Nature Reviews Materials, Vol. 2, No. 8, 2017, pp. 1-15.
[7] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications”, Materials Today, Vol. 20, No. 3, 2017, pp. 116-130.
[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, Vol. 6, No. 3, 2011, pp. 147-150.
[9] J. Guan, Z. Zhu, and D. Tománek, “Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study”, Physical Review Letters, Vol. 113, No. 4, 2014, p. 046804.
[10] S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions”, Angewandte Chemie, Vol. 127, No. 10, 2015, pp. 3155-3158.
[11] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement”, Advanced Materials, Vol. 25, No. 40, 2013, pp. 5714-5718.
[12] H. Oughaddou, H. Enriquez, M. R. Tchalala, H. Yildirim, A. J. Mayne, A. Bendounan, G. Dujardin, M. A. Ali, and A. Kara, “Silicene, a promising new 2D material”, Progress in Surface Science, Vol, 90, No. 1, 2015, pp. 46-83.
[13] A. Acun, L. Zhang, P. Bampoulis, M. V. Farmanbar, A. van Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M. I. Katsnelson, and H. J. Zandvliet, “Germanene: the germanium analogue of graphene”, Journal of Physics: Condensed matter, Vol. 27, No. 44, 2015, p. 443002.
[14] Y. Gogotsi, and B. Anasori, “The rise of MXenes”, ACS Nano, Vol. 13, No. 8, 2019, pp. 8491-8494.
[15] J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, “Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect”, Nanotechnology, Vol. 24, No. 43, 2013, p. 435705.
[16] K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides”, Journal of Physical Chemistry, Vol. 86, No. 4, 1982, pp. 463–467.
[17] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2 : A New Direct-Gap Semiconductor”, Physical Review Letters, Vol. 105, No. 13, 2010, p.136805.
[18] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, Vol. 6, No. 3, 2011, pp. 147-150.
[19] L. Liu, S. Kumar, Y. Ouyang, and J. Guo, “Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors”, IEEE Transactions Electron Devices, Vol. 58, No. 9, 2011, pp. 3042-3047.
[20] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?”, Nano Letters, Vol. 11, No. 9, 2011, pp. 3768-3773.
[21] B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2”, ACS Nano, Vol. 5, No. 12, 2011, pp. 9934-9938.
[22] R. Li, R., Y. Cheng, and W. Huang, “Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments”, Small, Vo. 14, No. 45, 2018, p. 1802091.
[23] M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, and H. Sahin, “Quantum properties and applications of 2D Janus crystals and their superlattices”, Applied Physics Reviews, Vol. 7, No. 1, 2020, p. 011311.
[24] A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, and Y. Wang, “Janus monolayers of transition metal dichalcogenides”, Nature Nanotechnology, Vol. 12, No. 8, 2017, pp. 744-749.
[25] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, “Janus monolayer transition-metal dichalcogenides”, ACS Nano, Vol. 11 No. 8, 2017, pp. 8192-8198.
[26] L. Dong, J. Lou, and V. B. Shenoy, “Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides”, ACS Nano, Vol. 11, No. 8, 2017, pp. 8242-8248.
[27] H. Cai, Y. Guo, H. Gao, and W. Guo, “Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study”, Nano Energy, Vol. 56, 2019, pp. 33-39.
[28] Z. Guan, S. Ni, and S. Hu, “Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study”, The Journal of Physical Chemistry C, Vol. 122, No. 11, 2018, pp. 6209-6216.
[29] T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, and W. Ren, “Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers”, Physical Review B, Vol. 97, No. 23, 2018, p. 235404.
[30] Y. Bai, Q. Zhang, N. Xu, K. Deng, and E. Kan, “The Janus structures of group-III chalcogenide monolayers as promising photocatalysts for water splitting”, Applied Surface Science, Vol. 478, 2019, pp. 522-531.
[31] S. B. Touski, and N. Ghobadi, “Structural, electrical, and Rashba properties of monolayer Janus Si2XY (X, Y= P, As, Sb, and Bi)”, Physical Review B, Vol. 103, No. 16, 2021, p. 165404.
[32] Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, and X. Q. Chen, “Chemical vapor deposition of layered two-dimensional MoSi2N4 materials”, Science, Vol. 369, No. 6504, 2020, pp. 670-674.
[33] L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, and Y. Li, “Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties”, Nature Communications, Vol. 12, No. 1, 2021, pp. 1-10.
[34] S. B. Touski, and N. Ghobadi, “Vertical strain-induced modification of the electrical and spin properties of monolayer MoSi2X4 (X= N, P, As and Sb)”, Journal of Physics D: Applied Physics, Vol. 54, No. 48, 2021, p. 485302.
[35] A. Bafekry, M. Faraji, D. M. Hoat, M. Shahrokhi, M. M. Fadlallah, F. Shojaei, S. A. H. Feghhi, M. Ghergherehchi, and D. Gogova, “MoSi2N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties”, Journal of Physics D: Applied Physics, Vol. 54, No. 15, 2021, p.155303.
[36] B. Özdamar, G. Özbal, M. N. Çınar, K. Sevim, G. Kurt, B. Kaya, and H. Sevinçli, “Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements”, Physical Review B, Vol. 98, No. 4, 2018, p. 045431.
[37] H. Yao, C. Zhang, Q. Wang, J. Li, Y. Yu, F. Xu, B. Wang, and Y. Wei. “Novel two-dimensional layered MoSi2Z4 (Z= P, As): New promising optoelectronic materials”, Nanomaterials, Vol. 11, No. 3, 2021, p. 559.
[38] B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, and X. Zhuang, “Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles”, Nano Energy, Vol. 82, 2021, p. 105716.
[39] Q. Li, W. Zhou, X. Wan, and J. Zhou, “Strain effects on monolayer MoSi2N4: Ideal strength and failure mechanism”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 131, 2021, p. 114753.
[40] S. D. Guo, Y. T. Zhu, W. Q. Mu, and W. C. Ren, “Intrinsic piezoelectricity in monolayer MSi2N4 (M= Mo, W, Cr, Ti, Zr and Hf)”, Europhysics Letters, Vol. 132, No. 5, 2020, p. 57002.
[41] Q. Wu, L. Cao, Y. S. Ang, and L. K. Ang, “Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field”, Applied Physics Letters, Vol. 118, No. 11, 2021, p. 113102.
[42] H. Zhong, W. Xiong, P. Lv, J. Yu, and S. Yuan, “Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M= Ti, Cr, Mo; A= Si; Z= N, P),” Physical Review B, Vol. 103, No. 8, 2021, p. 085124.
[43] N. Ghobadi, M. Hosseini, and S. B. Touski, “Field-Effect Transistor Based on MoSi₂N₄ and WSi₂N₄ Monolayers Under Biaxial Strain: A Computational Study of the Electronic Properties”, IEEE Transactions on Electron Devices, Vol. 69, No. 2, 2022, pp. 863-869
[44] L. Cao, G. Zhou, Q. Wang, L. K. Ang, and Y. S. Ang, “Two-dimensional van der Waals electrical contact to monolayer MoSi2N4”, Applied Physics Letters, Vol. 118, No. 1, 2021, p. 013106.
[45] S. D. Guo, W. Q. Mu, Y. T. Zhu, R. Y. Han, and W. C. Ren, “Predicted septuple-atomic-layer Janus MSiGeN4 (M= Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities”, Journal of Materials Chemistry C, Vol. 9, No. 7, 2021, pp. 2464-2473.
[46] Y. Yu, J. Zhou, Z. Guo, and Z. Sun, “Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting”, ACS Applied Materials & Interfaces, Vol. 13, No. 24, 2021, pp. 28090-28097.
[47] N. T. Binh, C. Q. Nguyen, T. V. Vu, and C. V. Nguyen, “Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN4 Heterostructures”, The Journal of Physical Chemistry Letters, Vol. 12, No. 16, 2021, pp. 3934-3940.
[48] S. D. Guo, Y. T. Zhu, W. Q. Mu, X. Q. Chen, “A piezoelectric quantum spin Hall insulator with Rashba spin splitting in Janus monolayer SrAlGaSe4”, Journal of Materials Chemistry C, Vol. 9, No. 23, 2021, pp. 7465-7473.
[49] B. Li, J. Geng, H. Ai, Y. Kong, H. Bai, K. H. Lo,  K. W. Ng, Y. Kawazoe, and H. Pan, “Design of 2D materials–MSi2CxN4− x (M= Cr, Mo, and W; x= 1 and 2)–with tunable electronic and magnetic properties,” Nanoscale, Vol. 13, No. 17, 2021, pp. 8038-8048.
[50] J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, Vol. 14, No. 11, 2002, p. 2745.
[51] J. P. Perdew, and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems”, Physical Review B, Vol. 23, No. 10, 1981, p. 5048.
[52] W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias”, Journal of Physics: Condensed Matter, Vol. 21, No. 8, 2009, p. 084204.
[53] S. Grimme, “Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction”, Journal of Computational Chemistry, Vol. 27, No. 15, 2006, pp. 1787-1799.
[54] W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, “Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe”, Physical Review B, Vol. 99, No. 7, 2019, p. 075160.
[55] M.Y. Liu, L. Gong, Y. He, C. Cao, “Tuning Rashba effect, band inversion, and spin-charge conversion of Janus XSn2Y monolayers via an external field”, Physical Review B, Vol. 103, No. 7, 2021, p. 075421.
[56] R. Frisenda, A. J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and H. S. Van Der Zant, “Atomically thin p–n junctions based on two-dimensional materials”, Chemical Society Reviews, Vol. 47, No. 9, 2018, pp. 3339-3358.
[57] M. A. Abdelati, A. A. Maarouf, and M. M. Fadlallah. “Substitutional transition metal doping in MoSi 2 N 4 monolayer: structural, electronic and magnetic properties”, Physical Chemistry Chemical Physics, Vol. 24, No. 5, 2022, pp. 3035-3042.