[1] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, No. 5696, 2004, pp. 666-669.
[2] مهدیه نیری و مریم نیری، "طراحی و شبیه سازی مدار جمع کننده پنج ارزشی جدید مبتنی بر ترانزیستور نانو نوار گرافن"، نشریه مدلسازی در مهندسی، دوره 18 ، شماره 63، زمستان 1399، صفحه 41-50.
[3] مهناز ذاکری و امید افضل نژاد، "بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره به کمک روش اجزا محدود "، نشریه مدلسازی در مهندسی، دوره 15 ، شماره 48 ، بهار 1396 ، صفحه 61-71.
[4] بهروز عبدی تهنه و علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونلزنی با دوپینگ خطی در ناحیه درین: شبیه سازی عددی کوانتومی "، نشریه مدلسازی در مهندسی، دوره 16 ، شماره 52 ، بهار 1397 ، صفحه 117-109.
[5] رضیه السادات حسینی المدواری، مریم نیری، سمیه فتوحی، "مطالعه خواص الکترونیکی و نوری تکلایه سولفید گالیم آلایش شده با محاسبات اصول اولیه "، نشریه مدلسازی در مهندسی، دوره 20 ، شماره 68 ، بهار 1401 ، صفحه 47-58.
[6] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides”, Nature Reviews Materials, Vol. 2, No. 8, 2017, pp. 1-15.
[7] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications”, Materials Today, Vol. 20, No. 3, 2017, pp. 116-130.
[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, Vol. 6, No. 3, 2011, pp. 147-150.
[9] J. Guan, Z. Zhu, and D. Tománek, “Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study”, Physical Review Letters, Vol. 113, No. 4, 2014, p. 046804.
[10] S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions”, Angewandte Chemie, Vol. 127, No. 10, 2015, pp. 3155-3158.
[11] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement”, Advanced Materials, Vol. 25, No. 40, 2013, pp. 5714-5718.
[12] H. Oughaddou, H. Enriquez, M. R. Tchalala, H. Yildirim, A. J. Mayne, A. Bendounan, G. Dujardin, M. A. Ali, and A. Kara, “Silicene, a promising new 2D material”, Progress in Surface Science, Vol, 90, No. 1, 2015, pp. 46-83.
[13] A. Acun, L. Zhang, P. Bampoulis, M. V. Farmanbar, A. van Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M. I. Katsnelson, and H. J. Zandvliet, “Germanene: the germanium analogue of graphene”, Journal of Physics: Condensed matter, Vol. 27, No. 44, 2015, p. 443002.
[14] Y. Gogotsi, and B. Anasori, “The rise of MXenes”, ACS Nano, Vol. 13, No. 8, 2019, pp. 8491-8494.
[15] J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, “Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect”, Nanotechnology, Vol. 24, No. 43, 2013, p. 435705.
[16] K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides”, Journal of Physical Chemistry, Vol. 86, No. 4, 1982, pp. 463–467.
[17] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2 : A New Direct-Gap Semiconductor”, Physical Review Letters, Vol. 105, No. 13, 2010, p.136805.
[18] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, Vol. 6, No. 3, 2011, pp. 147-150.
[19] L. Liu, S. Kumar, Y. Ouyang, and J. Guo, “Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors”, IEEE Transactions Electron Devices, Vol. 58, No. 9, 2011, pp. 3042-3047.
[20] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?”, Nano Letters, Vol. 11, No. 9, 2011, pp. 3768-3773.
[21] B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2”, ACS Nano, Vol. 5, No. 12, 2011, pp. 9934-9938.
[22] R. Li, R., Y. Cheng, and W. Huang, “Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments”, Small, Vo. 14, No. 45, 2018, p. 1802091.
[23] M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, and H. Sahin, “Quantum properties and applications of 2D Janus crystals and their superlattices”, Applied Physics Reviews, Vol. 7, No. 1, 2020, p. 011311.
[24] A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, and Y. Wang, “Janus monolayers of transition metal dichalcogenides”, Nature Nanotechnology, Vol. 12, No. 8, 2017, pp. 744-749.
[25] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, “Janus monolayer transition-metal dichalcogenides”, ACS Nano, Vol. 11 No. 8, 2017, pp. 8192-8198.
[26] L. Dong, J. Lou, and V. B. Shenoy, “Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides”, ACS Nano, Vol. 11, No. 8, 2017, pp. 8242-8248.
[27] H. Cai, Y. Guo, H. Gao, and W. Guo, “Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study”, Nano Energy, Vol. 56, 2019, pp. 33-39.
[28] Z. Guan, S. Ni, and S. Hu, “Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study”, The Journal of Physical Chemistry C, Vol. 122, No. 11, 2018, pp. 6209-6216.
[29] T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, and W. Ren, “Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers”, Physical Review B, Vol. 97, No. 23, 2018, p. 235404.
[30] Y. Bai, Q. Zhang, N. Xu, K. Deng, and E. Kan, “The Janus structures of group-III chalcogenide monolayers as promising photocatalysts for water splitting”, Applied Surface Science, Vol. 478, 2019, pp. 522-531.
[31] S. B. Touski, and N. Ghobadi, “Structural, electrical, and Rashba properties of monolayer Janus Si2XY (X, Y= P, As, Sb, and Bi)”, Physical Review B, Vol. 103, No. 16, 2021, p. 165404.
[32] Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, and X. Q. Chen, “Chemical vapor deposition of layered two-dimensional MoSi2N4 materials”, Science, Vol. 369, No. 6504, 2020, pp. 670-674.
[33] L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, and Y. Li, “Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties”, Nature Communications, Vol. 12, No. 1, 2021, pp. 1-10.
[34] S. B. Touski, and N. Ghobadi, “Vertical strain-induced modification of the electrical and spin properties of monolayer MoSi2X4 (X= N, P, As and Sb)”, Journal of Physics D: Applied Physics, Vol. 54, No. 48, 2021, p. 485302.
[35] A. Bafekry, M. Faraji, D. M. Hoat, M. Shahrokhi, M. M. Fadlallah, F. Shojaei, S. A. H. Feghhi, M. Ghergherehchi, and D. Gogova, “MoSi2N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties”, Journal of Physics D: Applied Physics, Vol. 54, No. 15, 2021, p.155303.
[36] B. Özdamar, G. Özbal, M. N. Çınar, K. Sevim, G. Kurt, B. Kaya, and H. Sevinçli, “Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements”, Physical Review B, Vol. 98, No. 4, 2018, p. 045431.
[37] H. Yao, C. Zhang, Q. Wang, J. Li, Y. Yu, F. Xu, B. Wang, and Y. Wei. “Novel two-dimensional layered MoSi2Z4 (Z= P, As): New promising optoelectronic materials”, Nanomaterials, Vol. 11, No. 3, 2021, p. 559.
[38] B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, and X. Zhuang, “Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles”, Nano Energy, Vol. 82, 2021, p. 105716.
[39] Q. Li, W. Zhou, X. Wan, and J. Zhou, “Strain effects on monolayer MoSi2N4: Ideal strength and failure mechanism”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 131, 2021, p. 114753.
[40] S. D. Guo, Y. T. Zhu, W. Q. Mu, and W. C. Ren, “Intrinsic piezoelectricity in monolayer MSi2N4 (M= Mo, W, Cr, Ti, Zr and Hf)”, Europhysics Letters, Vol. 132, No. 5, 2020, p. 57002.
[41] Q. Wu, L. Cao, Y. S. Ang, and L. K. Ang, “Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field”, Applied Physics Letters, Vol. 118, No. 11, 2021, p. 113102.
[42] H. Zhong, W. Xiong, P. Lv, J. Yu, and S. Yuan, “Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M= Ti, Cr, Mo; A= Si; Z= N, P),” Physical Review B, Vol. 103, No. 8, 2021, p. 085124.
[43] N. Ghobadi, M. Hosseini, and S. B. Touski, “Field-Effect Transistor Based on MoSi₂N₄ and WSi₂N₄ Monolayers Under Biaxial Strain: A Computational Study of the Electronic Properties”, IEEE Transactions on Electron Devices, Vol. 69, No. 2, 2022, pp. 863-869
[44] L. Cao, G. Zhou, Q. Wang, L. K. Ang, and Y. S. Ang, “Two-dimensional van der Waals electrical contact to monolayer MoSi2N4”, Applied Physics Letters, Vol. 118, No. 1, 2021, p. 013106.
[45] S. D. Guo, W. Q. Mu, Y. T. Zhu, R. Y. Han, and W. C. Ren, “Predicted septuple-atomic-layer Janus MSiGeN4 (M= Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities”, Journal of Materials Chemistry C, Vol. 9, No. 7, 2021, pp. 2464-2473.
[46] Y. Yu, J. Zhou, Z. Guo, and Z. Sun, “Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting”, ACS Applied Materials & Interfaces, Vol. 13, No. 24, 2021, pp. 28090-28097.
[47] N. T. Binh, C. Q. Nguyen, T. V. Vu, and C. V. Nguyen, “Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN4 Heterostructures”, The Journal of Physical Chemistry Letters, Vol. 12, No. 16, 2021, pp. 3934-3940.
[48] S. D. Guo, Y. T. Zhu, W. Q. Mu, X. Q. Chen, “A piezoelectric quantum spin Hall insulator with Rashba spin splitting in Janus monolayer SrAlGaSe4”, Journal of Materials Chemistry C, Vol. 9, No. 23, 2021, pp. 7465-7473.
[49] B. Li, J. Geng, H. Ai, Y. Kong, H. Bai, K. H. Lo, K. W. Ng, Y. Kawazoe, and H. Pan, “Design of 2D materials–MSi2CxN4− x (M= Cr, Mo, and W; x= 1 and 2)–with tunable electronic and magnetic properties,” Nanoscale, Vol. 13, No. 17, 2021, pp. 8038-8048.
[50] J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, Vol. 14, No. 11, 2002, p. 2745.
[51] J. P. Perdew, and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems”, Physical Review B, Vol. 23, No. 10, 1981, p. 5048.
[52] W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias”, Journal of Physics: Condensed Matter, Vol. 21, No. 8, 2009, p. 084204.
[53] S. Grimme, “Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction”, Journal of Computational Chemistry, Vol. 27, No. 15, 2006, pp. 1787-1799.
[54] W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, “Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe”, Physical Review B, Vol. 99, No. 7, 2019, p. 075160.
[55] M.Y. Liu, L. Gong, Y. He, C. Cao, “Tuning Rashba effect, band inversion, and spin-charge conversion of Janus XSn2Y monolayers via an external field”, Physical Review B, Vol. 103, No. 7, 2021, p. 075421.
[56] R. Frisenda, A. J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and H. S. Van Der Zant, “Atomically thin p–n junctions based on two-dimensional materials”, Chemical Society Reviews, Vol. 47, No. 9, 2018, pp. 3339-3358.
[57] M. A. Abdelati, A. A. Maarouf, and M. M. Fadlallah. “Substitutional transition metal doping in MoSi 2 N 4 monolayer: structural, electronic and magnetic properties”, Physical Chemistry Chemical Physics, Vol. 24, No. 5, 2022, pp. 3035-3042.