]1[ محمد مهدی ذبیحی شش پلی، مهدی علیاری شوره دلی و علی معرفیان پور، " تحلیل پایداری لیاپانوف در آموزش سیستم فازی- عصبی نوع 2 با یک الگوریتم ترکیبی مبتنی بر گرادیان نزولی و فیلتر کالمن"، نشریه مدلسازی در مهندسی، دوره 20، شماره 68، فروردین 1401، صفحه 85- 100.
]2[ مجتبی رادمهر و حسن زرآبادی پور، " کنترل مد لغزشی فازی برای ردیابی پروفایل بهینه سرعت قطار با وجود نامعینی"، نشریه مدلسازی در مهندسی، دوره 20، شماره 68، فروردین 1401، صفحه 139-152.
[3] J. Moren and C. Balkenius, “A Computational Model of Emotional Learning in the Amygdala”, From Anim. to Animat. From animals to animats 6, 2000, pp. 115-124.
[4] J. Moren, Emotion and Learning- A Computational Model of the Amygdala, Lund University, Lund, Sweden., 2002.
[5] E. Lotfi and M.-R. Akbarzadeh-T, “Practical Emotional Neural Networks”, Neural networks, Vol. 59, 2014, pp. 61–72.
[6] E. Lotfi and M.-R. Akbarzadeh-T, “A Winner-Take-All Approach to Emotional Neural Networks with Universal Approximation Property”, Inf. Sci., Vol. 346, 2016, pp. 369–388.
]7[ مهدی گلشن، محمد تشنه لب و آرش شریفی، " توسعه ماشین یادگیری هیجانی مغز با الهام از ماشین یادگیر مفروط ترتیبی آنلاین حافظهدار بازگشتی مبتنی بر شبکههای عصبی"، نشریه مدلسازی در مهندسی، دوره 20، شماره 70، مهر 1401، صفحه 1-21.
[8] C. Lucas, D. Shahmirzadi, and N. Sheikholeslami, “Introducing BELBIC: Brain Emotional Learning Based Intelligent Controller”, Intell. Autom. Soft Comput., Vol. 10, No. 1, 2004, pp. 11–21.
[9] M. R. Khalghani, M. H. Khooban, E. Mahboubi-Moghaddam, N. Vafamand, and M. Goodarzi, “A Self-Tuning Load Frequency Control Strategy for Microgrids: Human Brain Emotional Learning”, Int. J. Electr. Power Energy Syst., Vol. 75, 2016, pp. 311–319.
[10] A. Sadeghieh, H. Sazgar, K. Goodarzi, and C. Lucas, “Identification and Real-Time Position Control of a Servo-Hydraulic Rotary Actuator by Means of a Neurobiologically Motivated Algorithm”, ISA Trans., Vol. 51, No. 1, 2012, pp. 208–219.
[11] F. Baghbani, M.-R. Akbarzadeh-T, and M.-B. N. Sistani, “Stable Robust Adaptive Radial Basis Emotional Neurocontrol for a Class of Uncertain Nonlinear Systems,” Neurocomputing, vol. 309, 2018, pp. 11–26.
[12] F. Baghbani, M.-R. Akbarzadeh-T, M.-B. Naghibi-Sistani, and A. Akbarzadeh, “Emotional Neural Networks with Universal Approximation Property for Stable Direct Adaptive Nonlinear Control Systems”, Eng. Appl. Artif. Intell., Vol. 89, 2020, p. 103447.
[13] T. L. Le, C. M. Lin, and T. T. Huynh, “Self-Evolving Type-2 Fuzzy Brain Emotional Learning Control Design for Chaotic Systems Using PSO”, Appl. Soft Comput. J., Vol. 73, 2018, pp. 418–433.
[14] Q. Wu et al., “Self-Organizing Brain Emotional Learning Controller Network for Intelligent Control System of Mobile Robots”, IEEE Access, Vol. 6, 2018, pp. 59096–59108.
[15] W. Fang, F. Chao, C. M. Lin, L. Yang, C. Shang, and C. Zhou, “An Improved Fuzzy Brain Emotional Learning Model Network Controller for Humanoid Robots”, Front. Neurorobot., Vol. 13, 2019, pp. 1–16.
[16] S. Khorashadizadeh, S. M. Hashem Zadeh, M. R. Koohestani, S. Shekofteh, and S. Erkaya, “Robust Model-Free Control of a Class of Uncertain Nonlinear Systems Using BELBIC: Stability Analysis and Experimental Validation”, J. Brazilian Soc. Mech. Sci. Eng., Vol. 41, No. 8, 2019, pp. 1–12.
[17] A. Naderi Akhormeh, J. Roshanian, H. MoradiMaryamnegari, and A. M. Khoshnood, “Online and Stable Parameter Estimation Based on Normalized Brain Emotional Learning Model (NBELM)”, Int. J. Adapt. Control Signal Process., Vol. 33, No. 7, 2019, pp. 1047–1065.
[18] F. Baghbani, M. R. Akbarzadeh-T, and M. B. Naghibi Sistani, “Cooperative Adaptive Emotional Neuro-Control for a Class of Higher-Ordered Heterogeneous Uncertain Nonlinear Multi-Agent Systems”, Neurocomputing, Vol. 447, 2021, pp. 196–212.
[19] P. Parsa, M. R. Akbarzadeh-T, and F. Baghbani, “Command-Filtered Backstepping Robust Adaptive Emotional Control of Strict-Feedback Nonlinear Systems with Mismatched Uncertainties,” Inf. Sci., vol. 579, 2021, pp. 434–453, doi: 10.1016/j.ins.2021.07.090.
[20] H. Mirhajianmoghadam and M. R. Akbarzadeh-T., “Predictive Hierarchical Harmonic Emotional Neuro-Cognitive Control of Nonlinear Systems”, Eng. Appl. Artif. Intell., Vol. 111, 2022, p. 104781.
[21] I. R. Scola, L. R. G. Carrillo, and J. P. Hespanha, “Limbic System-Inspired Performance-Guaranteed Control for Nonlinear Multi-Agent Systems with Uncertainties”, IEEE Trans. Neural Networks Learn. Syst., 2021, pp. 1–12.
[22] P. Parsa, M. R. Akbarzade-T, And F. Baghbani, “Observer-Based Adaptive Emotional Command-Filtered Backstepping For Cooperative Control Of Inpud-Saturated Uncertain Strict-Feedback Multi-Agent Systems”, IET Control Theory & Applications , Vol. 17, No. 7, 2003, pp. 906-926, Doi: 10.1049/Cth2.12426.
[23] W.-Y. Wang, Y.-H. Chien, and T.-T. Lee, “Observer-Based T – S Fuzzy Control for a Class of General Nonaffine Nonlinear Systems Using Generalized Projection-Update Laws”, IEEE Trans. Fuzzy Syst., Vol. 19, No. 3, 2011, pp. 493–504.
[24] L. X. Wang, A Course in Fuzzy Systems and Control. Prentice-Hall International, Inc., 1997.