[1] علیرضا ابراهیمی، عباس دیدبان و رضا کی پور، "استراتژی کنترلی نوین در سیستمهای انرژی ترکیبی بادی-خورشیدی برمبنای تعیین محدوده های بهینه شارژ و دشارژ باتریها در بازه های زمانی مختلف". نشریه مدل سازی در مهندسی، دوره 16، شماره 55، دی 1397، صفحه 163- 173.
[2] O.A. Ahmed, and J.A.M. Bleijs, “Power flow control Methods for an ultracapacitor bidirectional converter in DC microgrids—A comparative study” Renewable and Sustainable Energy Reviews, Vol. 26, Oct. 2013, pp. 727-738.
[3] پرویز نجفی، عباس هوشمند و مهدی شاهپرستی. "مبدل واسط ادغام شده با قابلیت متعادل سازی ولتاژهای لینک DC در ریزشبکه هیبریدی دوقطبی". نشریه مدل سازی در مهندسی، دوره 18، شماره 60، خرداد 1399، صفحه 201- 216.
[4] C. Yin, H. Wu, F. Locment, and M. Sechilariu, “Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor”, Energy Conversion and Management, Vol. 132, Jan. 2017, Pages 14-27.
[5] جمشید آقائی، امین رحیمی رضایی و محمدرضا کریمی، "هماهنگی نیروگاههای بادی و دستگاههای ذخیرهساز سیستم قدرت در مسئلهی برنامهریزی امنیت-مقید مشارکت واحدها با استفاده از بهینهسازی استوار". نشریه مدل سازی در مهندسی، دوره 16، شماره 53، تیر 1397، صفحه 207- 220.
[6] H. GUENTRI, T. ALLAOUI, M. MEKKI, and M. DENAI, “Power management and control of a photovoltaic system with hybrid battery-supercapacitor energy storage based on heuristics methods”, Journal of Energy Storage, Vol. 39, July 2021.
[7] G. Oriti, N. Anglani, and A. L. Julian, “Hybrid Energy Storage Control in a Remote Military Microgrid with Improved Supercapacitor Utilization and Sensitivity Analysis”, IEEE Energy Conversion Congress and Exposition (ECCE), Sept.-Oct. 2019, pp. 6372-6378.
[8] S. K. Kollimalla, M. K. Mishra, and N. L. Narasamma, “Design and Analysis of Novel Control Strategy for Battery and Supercapacitor Storage System”, IEEE Transactions on Sustainable Energy, Vol. 5, No. 4, Oct. 2014, pp. 1137-1144.
[9] F. Tao, L. Zhu, Z. Fu, P. Si, and L. Sun, “Frequency Decoupling-Based Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Vehicle Using Fuzzy Control Method”, IEEE Access, Vol. 8, Sept. 2020, pp. 166491-166502.
[10] P. Lin, P. Wang, J. Xiao, J. Wang, C. Jin, and Y. Tang, “An Integral Droop for Transient Power Allocation and Output Impedance Shaping of Hybrid Energy Storage System in DC Microgrid”, IEEE Transactions on Power Electronics, Vol. 33, No. 7, July 2018, pp. 6262-6277.
[11] Y. Wang, Z. Sun, and Z. Chen, “Development of energy management system based on a rule-based power distribution strategy for hybrid power sources”, Energy, Vol. 175, May 2019, pp. 1055-1066.
[12] A. J. Abianeh, and F. Ferdowsi, “Sliding Mode Control Enabled Hybrid Energy Storage System for Islanded DC Microgrids with Pulsing Loads”, Sustainable Cities and Society, Oct. 2021, Vol. 73.
[13] K. M. Kotb, M. F. Elmorshedy, H. S. Salama, and A. Dán, “Enriching the stability of solar/wind DC microgrids using battery and superconducting magnetic energy storage based fuzzy logic control”, Journal of Energy Storage, vol. 45, Jan. 2022.
[14] M. Wieczorek, and M. Lewandowski, “A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm”, Applied Energy, Vol. 192, April 2017, pp. 222-233.
[15] A. Elgammal, “An Efficient Energy Management Scheme for a Hybrid FC-SC-Battery Electric Vehicle using Model Predictive Control and Multi-Objective Particle Swarm Optimization”, International Journal of Recent Technology and Engineering (IJRTE), Vol.8, Issue-4, Nov. 2019, pp. 4368-4380.
[16] C. Liu, Y. Wang, L. Wang, and Z. Chen, “Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization”, Journal of Power Sources, Vol. 438, Oct. 2019.
[17] J. Shen, and A. Khaligh, “A Supervisory Energy Management Control Strategy in a Battery/Ultracapacitor Hybrid Energy Storage System”, IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, Oct. 2015, pp. 223-231.
[18] L. Wang, Y. Wang, C. Liu, D. Yang, and Z. Chen, “A Power Distribution Strategy for Hybrid Energy Storage System Using Adaptive Model Predictive Control”, IEEE Transactions on Power Electronics, Vol. 35, No. 6, June 2020, pp. 5897-5906.
[19] X. Lu, Y. Chen, M. Fu, and H. Wang, “Multi-Objective Optimization-Based Real-Time Control Strategy for Battery/Ultracapacitor Hybrid Energy Management Systems”, IEEE Access, Vol. 7, 2019, pp. 11640-11650.
[20] H. Yin, C. Zhao, M. Li, and C. Ma, “Utility Function-Based Real-Time Control of a Battery Ultracapacitor Hybrid Energy System”, IEEE Transactions on Industrial Informatics, Vol. 11, No. 1, Feb. 2015, pp. 220-231.
[21] J. Shen, and A. Khaligh, “Design and Real-Time Controller Implementation for a Battery-Ultracapacitor Hybrid Energy Storage System”, IEEE Transactions on Industrial Informatics, Vol. 12, No. 5, Oct. 2016, pp. 1910-1918.
[22] H. Miniguano, A. Barrado, A. Lázaro, P. Zumel, and C. Fernández, “General Parameter Identification Procedure and Comparative Study of Li-Ion Battery Models”, IEEE Transactions on Vehicular Technology, Vol. 69, No. 1, Jan. 2020, pp. 235-245.
[23] E. D. Kostopoulos, G. C. Spyropoulos, and J. K. Kaldellis, “Real-world study for the optimal charging of electric vehicles”, Energy Reports, Vol. 6, Nov. 2020, pp. 418-426.
[24] L. Zhang, Z. Wang, X. Hu, F. Sun, and D.G. Dorrell, “A comparative study of equivalent circuit models of ultracapacitors for electric vehicles”, Journal of Power Sources, Vol. 274, Jan. 2015, pp. 899-906.
[25] N. Mohan, T.M. Undeland, and W.P. Robbins, “Power Electronics: Converters, Applications, and Design”, John Wiley and Sons, 3rd Edition, 2002.
[26] S. Boyd, and L. Vandenberghe, Convex Optimization, first edition, Cambridge university press, NY, USA 2004.
[27] A. Abdollahi, X. Han, N. Raghunathan, B. Pattipati, B. Balasingam, K.R. Pattipati, Y. Bar-Shalom, and B. Card, “Optimal charging for general equivalent electrical battery model, and battery life management”, Journal of Energy Storage, Vol. 9, Feb. 2017, pp. 47-58.