MOST STABLE MOTION DESIGN OF THE MOBILE ROBOT IN THE SPECIFIED PATH

Authors

Abstract

In this research, a method for stabilization of the robot motion on the specified path is presented. Also a new hybrid system that is capable of stabilizing the unstable condition is investigated. To enable a robot to maintain stability or stabilizing unstable conditions, spatial parallel mechanism between the moving base and manipulators is used. The parallel mechanism does not have any rotation relative to mobile base and only has translational motions. Carrying more loads by robots is one of the main demands. Increasing the robot load may cause the robot tips over. The robot can carry more loads using a parallel mechanism as a base for serial manipulator. In this paper, moment-height stability measure is explained. Holonomic and nonholonomic constraints of the system are derived and then kinematics and dynamics of the proposed robot is derived. The mathematical model is validated by simulation in ADAMS software. In a maneuver a part of the path that is unstable is stabled. Also most stable motion is designed for the whole of path.

Keywords