A NOVEL MODEL FOR DECISION–MAKING ON OPEC PRODUCTION LEVEL BASED ON OIL PRICE PREDICTION AND GAME THEORY

Authors

1 university

2 shahed university

Abstract

In this paper, a novel hybrid model based on neural network and Game Theory is proposed to support the analyzers in oil market. In this model, first the neural network is utilized to learn the oil prices associated with OPEC production level and USA imports level. Then the learned neural network is applied by a game model. Finally the Nash equilibrium points of the game present the optimum decision which can be decided by OPEC. In experimental studies, the proposed model is applied to determine the best decision at March 2012. According to the results, the model can be used for OPEC decision-making and oil prices prediction.

Keywords


 
]1[ اصفهانیان، م.، ناصری، م. (1387)، ارایه یک مدل شبکه عصبی جها پیش بینی کوتاه مدت نفت خام، نشریه بین المللی علوم مهندسی دانشگاه علم و صنعت ایران، شماره 1، جلد 35، صص27-19.
]2[ صادقی، ح.، ذولفقاری ، م.، الهامی نژاد، م. (1390)، مقایسه عملکرد شبکه های عصبی و مدل ARIMA در مدل سازی و پیش بینی کوتاه مدت قیمت نفت خام اوپک (با تاکید بر انتظارات تطبیقی)، فصل نامه مطالعات افتصاد انرژی، شماره 28، صص 47-25.
]3[ فرجام فر، ا.، ناصری، م.، احمدی، س.م.م.، (1386)، پیش بینی قیمت نفت با دو روش ARIMA و شبکه های عصبی مصنوعی، فصل نامه پژوهش های اقتصادی ایران، سال نهم، شماره 32، صص183-161.
]4[ مشیری، س.،  فروتن، ف.، (1383)، آزمون آشوب  پیش بینی قیمتهای آتی نفت خام، فصل نامه پژوهش های اقتصادی ایران، سال هشتم، شماره 21، صص 90-67.
]5[ موسوی، س.ن.ا.، مختاری، ز.، فرج راده، ز.، (1389)، پیش بینی مصرف حامل های انرژی در بخش کشاورزی ایران با الگوهای ARCH و ARIMA، فصل نامه مطالعات اقتصاد انرژی، سال هفتم، شماره 27، صص 195-181.
]6[ نویدی، ح. ر. و همکاران (1390)، مدخلی بر نظریه بازیها، انتشارات دانشگاه شاهد.
[7] Anand A., Gulenc, D., Lartigue, J., (2010), Forecasting Petroleum Prices. Available:
[8] Hagan, M. T. and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989–993, Nov. 1994.
[9] Hamilton J. D., (2008), Understanding Crude Oil Prices, Policy and Economics, University of California Energy Institute, UC Berkeley.
[10]He, S., Zou, Y., Quan, D., (2012), Application of RBF Neural Network and ANFIS on the Prediction of Corrosion Rate of Pipeline Steel in Soil, Recent Advances in Computer Science, 124: 639-644.
[11]George, S. et al., (2012), Forecasting the Prices of Credit Default Swaps of Greece by a Neuro-fuzzy Technique, Technical University of Crete.
[12]Imad Haidar et al., (2008), Forecasting Model for Crude Oil Prices Based on Artificial Neural Networks, IEEE ISSNIP.
[13]Lotfi, E., & Navidi, H. (2012). A Decision Support System for OPEC Oil Production Level based on Game Theory and ANN. Advances in Computational Mathematics and its Applications, 2(1), 253-258.
[14]Malliaris, A.G., Malliaris, M., (2009), Time Series and Neural Networks Comparison on Gold, Oil and the Euro, Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA.
[15]Mingming, T., (2012),  A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices, Journal of Economics and Business, 64(4): 275-286.
[16]Morana, C., (2001), A semi parametric approach to short term oil price forecasting. Energy Economics, 23:325-388.
[17]Mustaffa, Z., Yusof, Y., (2011), Optimizing LSSVM Using ABC For Non-Volatile Financial Prediction, Australian Journal of Basic and Applied Sciences, 5(11): 549-556.
[18]Nashawi S, Malallah A, Al-Bisharah M, (2010), Forecasting world crude oil production using multicyclic hubbert model, Energy Fuels, 24 :1788–1800.
[19]Sadorsky, P., (2002), Time-varying risk premiums in petroleum futures prices Energy economics, 24:539–556.
[20]Schmidbauer H, Rösch A, (2009), OPEC news announcements: Effects on oil price expectation and volatility, in Proc. the 29th International Symposium on Forecasting, ISF09.
[21]Wang J., Pan H., )2012(, Forecasting Crude Oil Price and Stock Price by Jump Stochastic Time Effective, Neural Network Model, Journal of Applied Mathematics, doi:10.1155/2012/646475.