MODELING OF ELECTRICAL DISCHARGE MACHINING PROCESS USING NEURAL NETWORK AND ITS OPTIMIZATION USING FIREFLY ALGORITHM


 
[1] Crowson, R. , (2006), Parts fabrication principles and process, pp.177.
[2] H. Ramasawmy, L., (2004), Blunt, Effect of EDM process parameters on 3D surface topography, Journal of Materials Processing Technology,Vol. 148, pp. 155-164 .
[3] Ho, K.H., Newman, S.T., (2003), State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture,Vol.  43, pp. 1287-1300.
[4] Mandal, D., Pal, S. K., Saha, P., (2007),  Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II, Journal of Materials Processing Technology,Vol 186,pp. 154–162.
[5] Yang, S., Srinivas, J., Mohan, S., Lee, D., Balaji, S., (2009), Optimization of electric discharge machining using simulated annealing, Journal of Materials Processing Technology, Vol. 209, pp. 4471–4475.
[6] Pradhan,M., Biswas, C., (2008), Modelling of machining parameters for MRR in EDM using response surface methodology, Proceedings of NCMSTA’08 Conference.
[7] Rao, G. K, Rangajanardhaa, G., Rao, S., Rao, D. M., (2009), Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm, journal of materials processing technology, Vol. 209, pp.1512–1520.
[8] Panda, D. K., Bhoi, R. K., (2005), Artificial neural network prediction of material removal rate in electro discharge machining, Materials and Manufacturing Processes, Vol. 20, pp. 645–672.
[9]  شاهعلی، ح.، سلیمانی یزدی، م.، زارع پور فیروزآبادی، ح.، (1387 )، پیش بینی صافی سطح آلیاژ LM13 حین ماشینکاری با استفاده از شبکه عصبی مصنوعی وتحلیل رگرسیون، نهمین کنفرانس مهندسی ساخت و تولید ایران.
[10] Vanderplaats,G.N., (1984), Numerical optimization techniques for engineering design, Mc Graw-Hill N.Y.
[11] Yang, X-S., (2008), Nature-Inspired Metaheuristic Algorithm, Luniver Press.
[12] Yang, X-S., (2009), Firefly algorithms for multimodal optimization, in: Stochastic Algorithms, Foundations and Applications, SAGA, Lecture Notes in Computer Sciences, 5792,pp. 169-178.
[13] Yang,X.-S., (2010), Firefly algorithm, stochastic test functions and design optimization, International Journal of  Bio-inspired Computation, Vol. 2, No. 2, pp. 78-84.
[14] Apostolopoulos,T., (2010),  Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem, International Journal of Combinatorics Vol. 2011.
[15] Zang, H., Zhang, S., (2010), Hapeshi, K., A Review of Nature-Inspired Algorithms, Journal of Bionic Engineering.
[16] Sayadi, M. K., Ramezanian, R., Ghaffari-Nasab, N., (2010),A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems, International Journal of Industrial Engineering Computations, Vol. 1,pp. 1-10.
[17] Arun Annamalai, A., Chandrabos, B. M., Karthikeyan, K.,Azeezur Rahman, A., (2012), Comparison and Study of minimizing rotor angle instability Using GSA and FF algorithm, Procedia engineering, Vol. 38, pp. 2420-2432.
[18] Coelho, L., Mariani, V., (2012), Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning, Computers and Mathematics with Applications, Vol. 64, pp. 2371–2382.
[19] Kazem, A., Sharifi, E., Hussain, F., Saberi, M., (2013), Support vector regression with chaos-based firefly algorithm for stock market price forecasting, Applied Soft Computing, Vol. 13, pp. 947–958.