مدلسازی تجربی و بررسی تاثیر پارامترهای فرایند جوشکاری اصطکاکی اختلاطی آلیاژ آلومینیوم5456 با استفاده از روش سطح پاسخ

نویسندگان

1 دانشگاه صنایع و معادن ایران

2 دانشگاه امام حسین(ع)

3 دانشگاه صنعتی مالک اشتر

چکیده

فرآیند جوشکاری اصطکاکی اختلاطی، یک فرایند اتصال حالت جامد می‌باشد که در سال 1991 توسط موسسهTWI توسعه داده شد. در این پژوهش فرایند اتصال دهی ورقهای آلیاژی آلومینیوم 5456 در حالت لبه روی هم، به گونه‌ای که ورق کار سرد شده H321 با ضخامت 5 میلی متر بر روی ورق آنیل با ضخامت 5/2 میلی متر قرار می گیرد، صورت پذیرفت و تأثیر همزمان پارامترهای سرعت دورانی، سرعت پیشروی و زاویه استقرار ابزار بر متغیرهای نیروی شکست و ارتفاع عیب هوک در فرآیند جوشکاری اصطکاکی اختلاطی با استفاده از روش سطح پاسخ مورد تحقیق قرار گرفت. پس از ارزیابی و تحلیل نمونه های جوشکاری شده، با استفاده از نتایج داده‌های تجربی، مدل سازی توسط روش سطح پاسخ چند انجام گرفت و جهت صحت مدل چندین تست راست آزمایی صورت پذیرفت که نتایج خواص مکانیکی مدل به طور میانگین با حالت تجربی در حدود 88/3 درصد خطا داشت. در ادامه آنالیز واریانس برای بررسی تاثیر میزان هر کدام از پارامترهای جوشکاری برروی متغیرهای حالت فرایند جوشکاری مورد استفاده قرار گرفت و مشاهده شد که پارامتر سرعت پیشروی بیشترین تاثیر را بر روی نیروی شکست و پارامتر سرعت دورانی بیشترین تاثیر را بر روی ارتفاع هوک داشته و پارامتر زاویه استقرار ابزار کمترین تاثیر نسبت به دو پارامتر دیگر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental modeling and the effect analysis of friction stir welding parameters of 5456 aluminum alloy using response surface method

نویسندگان [English]

  • mansour mardalizadeh 1
  • mohammad reza soleymani yazdi 2
  • mohammad ali safarkhanian 3
چکیده [English]

Friction stir welding is a solid state process which is developed by Twi institute in 1991. In this paper, lap welding of 5456 aluminum alloy sheets were carried out while hard working H321 sheet with a thickness of 5 mm was on top of a 2.5 mm thickness annealed sheet and the simultaneous effect of rotation speed of tool, feed rate and tool angle parameters on failure force and the height of hook in friction stir welding were investigated using response surface method. After evaluation and analysis of welding samples, response surface method was used using experimental results and several verification models were performed for error estimation. The results of mechanical properties of model show 3.88 percent average error with experimental results. In proceeding, the analysis of variance was used for investigation of the welding parameters effect on welding mode variations and it was seen that feed rate has the greatest effect on failure force and rotation speed has the greatest effect on the hook height and tool angle has the lowest effect in comparison with this two parameters.

کلیدواژه‌ها [English]

  • Friction stir welding
  • 5456 Aluminum Alloy
  • Lap Joint Welding
  • Response surface method
  • Analysis of Variance
 

[1]     W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple smith, C.J. Dawes, G.B. “Patent Application”, No. 9125978.8, 1991.

[2]     R.S. Mishra, Z.Y. Mab, “Friction stir welding and processing”, Materials Science and Engineering R 50, pp. 1–78, 2005.

[3]     L. Dubourg, A. Merati, M. Jahazi, “Process optimization and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin”, Materials and Design, 3324-3330, 2010.

[4]   H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang, “The investigation of typical welding defects for 5456 aluminum alloy friction stirs welds”, Materials Science and Engineering A,64-69, 2006.

[5]  شیرازی حامد، خیراندیش شهرام، صفرخانیان محمدعلی، 1391،"تأثیر سرعت پیشروی ابزار جوشکاری اصطکاکی اختلاطی (FSW) بر ریزساختار اتصال لبه روی هم (Lap-Joint) ورقهای با ضخامت متفاوت آلیاژ آلومینیوم 5456"، سومین کنفرانس بین المللی عملیات حرارتی مواد، اصفهان، دانشگاه آزاد اسلامی واحد شهر مجلسی.

[6]     I.S. Kim, K.J. Son, Y.S. Yang, P.K.D.V. Yaragada, “Sensitivity analysis for process parameters in GMA welding processes using a factorial design method”, Int. J. of Machine Tools & Manufacture, 43, pp. 763–769, 2003.

[7]     J. P. Ganjigatti & D. K. Pratihar & A. Roy Choudhury, “Modeling of the MIG welding process using statistical approaches”, Int. J. of Adv. Manuf. Tech., pp. 798-809, 2007.

[8]     D.S. Nagesh, G.L. Datta, “Prediction of weld bead geometry and prediction in shielded metal-arc welding using artificial neural networks”, Int. J. of Materials Processing Technology, Vol. 79, pp. 1–10, 2003.

[9]      C.S. Wu, J.Q. Gao, Y.H. Zhao, “Neural network for weld penetration control in gas tungsten arc welding”, Int. J. of Journal of Acta Metall. Sin., Vol. 19, pp. 27-33, 2007.

[10]  H. Okuyucu, A. Kurt, E. Arcaklioglu, “Artificial neural network application to the Frictions stir welding of aluminum”, Materials and Design, Volume 28, Issues 1, P. 78–84, 2007.

[11]  L. Fratini, G. Buffa, D. Palmeri, “Using a neural network for predicting the average grain size in friction stir Welding processes”, Computers & Structures, Volume 87, Issues 17–18, P.1166-1174, 2009.

[12]  American Welding Society Committee D17.3, “Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Hardware”, American Welding Society(AWS), Miami,Edition.1, No. 17.3

[13]  M. Kathleen, et. al., “Metals Handbook: Metallography and Microstructure”, American Society for Metals (ASM), Vol.9, Ninth edition, P. 352-354, 1985.

[14] G. Buffa, G. Campanile, L. Fratini, “Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties”, Materials Science and Engineering a 519, pp 19–26, 2009.

[15]  M. Ericsson, L.Z. Jin, R. Sandstrom, “Fatigue properties of friction stir overlap welds”, International Journal of Fatigue, 57-69, 2007.

[16]  Y.C. Chen, K. Nakata. “Friction stir lap joining aluminum and magnesium alloys”, Scripta Matrialia 68, 433-436, 2008.

[17]  D. Fersini, A.Pirondi. “Fatigue behavior of Al2024-T3 friction stirs welded lap joints”, Engineering Facture Mechanics, Volume 74, pp 468–480,2007.

[18]  X. Cao, M. Jahazi. “Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy”, Materials and Design, 32, 1-11, 2011.