[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple smith, C.J. Dawes, G.B. “Patent Application”, No. 9125978.8, 1991.
[2] R.S. Mishra, Z.Y. Mab, “Friction stir welding and processing”, Materials Science and Engineering R 50, pp. 1–78, 2005.
[3] L. Dubourg, A. Merati, M. Jahazi, “Process optimization and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin”, Materials and Design, 3324-3330, 2010.
[4] H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang, “The investigation of typical welding defects for 5456 aluminum alloy friction stirs welds”, Materials Science and Engineering A,64-69, 2006.
[5] شیرازی حامد، خیراندیش شهرام، صفرخانیان محمدعلی، 1391،"تأثیر سرعت پیشروی ابزار جوشکاری اصطکاکی اختلاطی (FSW) بر ریزساختار اتصال لبه روی هم (Lap-Joint) ورقهای با ضخامت متفاوت آلیاژ آلومینیوم 5456"، سومین کنفرانس بین المللی عملیات حرارتی مواد، اصفهان، دانشگاه آزاد اسلامی واحد شهر مجلسی.
[6] I.S. Kim, K.J. Son, Y.S. Yang, P.K.D.V. Yaragada, “Sensitivity analysis for process parameters in GMA welding processes using a factorial design method”, Int. J. of Machine Tools & Manufacture, 43, pp. 763–769, 2003.
[7] J. P. Ganjigatti & D. K. Pratihar & A. Roy Choudhury, “Modeling of the MIG welding process using statistical approaches”, Int. J. of Adv. Manuf. Tech., pp. 798-809, 2007.
[8] D.S. Nagesh, G.L. Datta, “Prediction of weld bead geometry and prediction in shielded metal-arc welding using artificial neural networks”, Int. J. of Materials Processing Technology, Vol. 79, pp. 1–10, 2003.
[9] C.S. Wu, J.Q. Gao, Y.H. Zhao, “Neural network for weld penetration control in gas tungsten arc welding”, Int. J. of Journal of Acta Metall. Sin., Vol. 19, pp. 27-33, 2007.
[10] H. Okuyucu, A. Kurt, E. Arcaklioglu, “Artificial neural network application to the Frictions stir welding of aluminum”, Materials and Design,
Volume 28, Issues 1, P. 78–84, 2007.
[11] L. Fratini, G. Buffa, D. Palmeri, “Using a neural network for predicting the average grain size in friction stir Welding processes”, Computers & Structures, Volume 87, Issues 17–18, P.1166-1174, 2009.
[12] American Welding Society Committee D17.3, “Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Hardware”, American Welding Society(AWS), Miami,Edition.1, No. 17.3
[13] M. Kathleen, et. al., “Metals Handbook: Metallography and Microstructure”, American Society for Metals (ASM), Vol.9, Ninth edition, P. 352-354, 1985.
[14] G. Buffa, G. Campanile, L. Fratini, “Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties”, Materials Science and Engineering a 519, pp 19–26, 2009.
[15] M. Ericsson, L.Z. Jin, R. Sandstrom, “Fatigue properties of friction stir overlap welds”, International Journal of Fatigue, 57-69, 2007.
[16] Y.C. Chen, K. Nakata. “Friction stir lap joining aluminum and magnesium alloys”, Scripta Matrialia 68, 433-436, 2008.
[17] D. Fersini, A.Pirondi. “Fatigue behavior of Al2024-T3 friction stirs welded lap joints”, Engineering Facture Mechanics,
Volume 74, pp 468–480,2007.
[18] X. Cao, M. Jahazi. “Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy”, Materials and Design, 32, 1-11, 2011.