Parametric Simulation of a CHP System Based on Industrial Micro Turbine from Exergy and Economic Viewpoints

Authors

Abstract

The present paper deals with the parametric simulation and economic analysis of a CHP system based on an industrial microturbine to produce combined electricity and heat energy. The compressor pressure ratio and turbine inlet gas temperature have been chosen as design and optimization parameters for the current CHP system. In the present investigation, the simple and TRR model have been applied for estimation of the electricity price and other costs. The results show that the optimal performance of the system is obtained by the compressor pressure ratio in the range of 5 to 7 bar and decreasing of the turbine inlet temperature causes the reduction of the optimal pressure ratio. Also, the economical investigation results confirms that the system electricity price in an optimum case is about 20 to 25 cents, while the installation and preparation cost is about 500- 600 dollar per kilowatt. Comparative analysis between two applied economical models proves that the TRR model shows the better accurate results in comparison to simple model with about 9-12 percent.

Keywords


 
[1] Catalog of CHP Technologies, (2008), “Combined Heat and Power Partnership”. U.S. Environmental Protection Agency.
[2] Gillette, F., (2006), “CHP Case Studies-Saving Money and Increasing Security”. Capstone Turbine Corporation.
[4] Taki, Y., Babus Haq, R.F., Elder, R.L., Probert, S.D., (1991). “Design and Analysis of a Compact Gas Turbine for a CHP System”. Heat Recover System & CHP, Vol. 11, No. 2/3, pp. 149–160.
[5] Stromberg, J., Franck, P., (1994). “Gas Turbine in Industrial CHP Applications-Assessment of Economics”. Heat Recover System & CHP, Vol. 14, No. 2, pp. 129–141.
[6] Labinov, S.D., Zaltash, A., Rizy, D.T., Fairchild, P.D., Devault, R.C., Vineyard, E.A., (2002). “Predictive Algorithms for Microturbine Performance for BCHP Systems”. ASHRAE Transactions, vol. 108, pp. 670-681.
[7] Knight, R., Linder, U., Markworth, N., Perz, E., (2004). “Thermo-Economic Optimization of Whole Gas Turbine Plant (GTPOM)”. Applied Thermal Engineering, Vol. 24, pp. 1725–1733.
]8[ صنایع، س.، قاضی­نژاد، م.، آخرتی، ر.، نوروزی­منش، ع.، (1385)، بهینه­سازی فنی-اقتصادی میکروتوربین جهت تولید قدرت و حرارت برای مصارف ساختمان. پنجمین همایش بهینه­سازی مصرف سوخت در ساختمان، 5 و 6 اردیبهشت.
[9] Ehyaei, M.A., Bahadori, M.N., (2007). “Selection of Micro Turbine to Meet Electrical and Thermal Energy Needs of Residential Building in Iran”. Energy and Buildings, Vol. 39, pp. 1227–1234.
[10] Ehyaei, M.A., Mozafari, A., (2010). “Energy, Economic and Environmental (3E) Analysis of Micro Gas Turbine Employed for on-site Combined Heat and Power Production”. Energy and Buildings, Vol. 42, pp. 259–264.
[11] Ameli, S.M., Agnew, B., Potts, I., (2007). “Integrated Distributed Energy Evaluation Software (IDEAS) Simulation of A Micro-Turbine Based CHP System”. Applied Thermal Engineering, Vol. 27, pp. 2161-2165.
[12] Kaikko, J., Backman, J. (2007). “Technical and economic performance analysis for a microturbine in combined heat and power generation”. Energy, Vol. 32, Issue 4, pp.378-387.
]13[ کریمی علویجه، س.، بهبهانی­نیا، س.ع.، عمیدپور، م.، رضاپور، ک.، (1388)، تحلیل ترمواکونومیک سیستم تولید پراکنده برق و حرارت با محرک اولیه میکروتوربین گازی. اولین کنفرانس صنعت نیروگاه­های حرارتی، 26 و 27 اردیبهشت.
[14] Cadorin, M., Spina, P.R., Venturini, M. (2010). “Feasibility Analysis of Micro-CHP Systems for Residential Building Applications”. ECOS International Conference , Ferrara, Italy, June 14-17.
]15[ عامری، م.، تنها، ا.ع.، کریمی علویجه، س.، (1390)، آنالیز اگزرژی و ترمواکونومیک یک سیکل تولید توان همزمان برای ساختمانی ده طبقه در تهران. نوزدهمین همایش سالانه مهندسی مکانیک ایران، 20 الی 22 اردیبهشت.
]16[ آرامی، م.، حاج حسن تهرانی، ا.، موسوی، م.، حمیدزاده، ز.، (1390)، توجیه فنی اقتصادی استفاده از فناوری میکروتوربین برای تامین همزمان برق و حرارت برای بخش خانگی. دومین کنفرانس مدیریت و بهینه­سازی انرژی، 20 و 21 دی.
 [17] Qiu, G., Liu, H., Riffat, S., (2011). “Expanders for Micro-CHP Systems with Organic Rankine Cycle”. Applied Thermal Engineering, Vol. 31, pp. 3301-3307.
[18] Tempesti, D., Fiaschi, D., Gabuzzini, F. (2012). “Thermo-Economic Assessment of a Micro CHP System Fuelled by Geothermal and Solar Energy”. ECOS International Conference , Perugia, Italy, June 26-29.
 [19] Mahto, D., Subhasis, P., (2013). “Thermodynamics and Thermo-Economic Analysis of Simple Combined Cycle with Inlet Fogging”. Applied Thermal Engineering, Vol. 51, pp. 413-424.
[20] Bejan A., Tsatsaronis G. and Moran M., (1996). “Thermal Design and Optimization”. John Wiley& Sons.
[21] Cengel, Y.A. and Boles, M.A., (1998). “Thermodynamics an engineering approach”. McGraw-Hill, New York.
[22] Haseli Y., Dincer I., Naterer G.F., (2008). “Thermodynamic Modeling of a Gas Turbine Cycle Combined with a Solid Oxide Fuel Cell”. Hydrogen energy, Vol. 33, 2008, pp. 5811-5822.
[23] See at www.nt.ntnu.no/users//magnehi/cepci_2011_py.pdf.
[24] Arsalis A., (2008). “Thermoeconomic Modeling and Parametric Study of Hybrid SOFC–Gas Turbine–Steam Turbine Power Plants Ranging from 1.5 to 10MWe”. Power Sources, Vol. 181, 2008, pp. 313-326.
[25] Horlock J., (2003).“Advanced Gas Turbine Cycles”. an imprint of Elsevier Science.