Numerical study on the effect of geometrical parameters on flare tip wall temperature and emission

Authors

Abstract

Flare tips usually suffer from high temperature that causes more maintenance. By controlling and decreasing the temperature it is possible to reduce the maintenance cost and reduce the emission. Considering numerical simulation technique for combustion, flare tip wall temperature and emission have been studied. Three different geometries include of cylindrical, conical shape and reverse cone shape for flare tip under several wind velocities have been simulated in a 3D space. This study shows that for parameter that have been studied in the research a cone shape can provide better situation such as less pollution or wall temperature.

Keywords


[1]         س. درفشی, م. چاوش‏باشی, ‏س. رادمان, مطالعه‎ ‎امکان‎ ‎سنجی‎ ‎سیستم‎ ‎بازیابی‎ ‎گازهای‎ ‎ارسالی‎ ‎به‎ ‎فلر‎ ‎پتروشیمی‎ ‎تبریز‎ ‎و‎ ‎کاهش‎ ‎عملیات‎ ‎فلرینگ تحت‎ ‎مکانیزم CDM، سومین همایش سراسری مدیران و متخصصین ‏HSE‏ وزارت نفت، 1389.
[2]         C. B. JR, V. Gershtein, and X. Li, Computational fluid dynamics in industrial combustion. CRC Press, 2001, p. 630.
[3]         “Evaluation of the Efficiency of Industrial Flares: H2S Gas Mixtures and pilot Assisted Flares EPA-600/2-86-080,” 1986.
[4]         M. Strosher, “Investigation of Flare Gas Emissions in Alberta,” 1996.
[5]         L. Kostiuk, M. Johnson, and G. Thomas, “University of alberta flare research project,” 2004.
[6]         M. R. Johnson, D. J. Wilson, and L. W. Kostiuk, “a Fuel Stripping Mechanism for Wake-Stabilized Jet Diffusion Flames in Crossflow,” Combust. Sci. Technol., vol. 169, no. 1, pp. 155–174, Aug. 2001.
[7]         S. Salomons, “Modelling the behaviour of a reverse-flow catalytic reactor for the combustion of lean methane,” University of Alberta, Edmonton, 2003.
[8]         D. Castiñeira and T. Edgar, “CFD for simulation of steam-assisted and air-assisted flare combustion systems,” Energy & fuels, pp. 1044–1056, 2006.
[9]         D. Castiñeira, “A Computational Fluid Dynamics Simulation Model for Flare Analysis and Control,” The University of Texas at Austin, 2006.
[10]       D. Castiñeira and T. F. Edgar, “Computational Fluid Dynamics for Simulation of Wind-Tunnel Experiments on Flare Combustion Systems,” Energy & Fuels, vol. 22, no. 3, pp. 1698–1706, May 2008.
[11]       D. Castiñeira and T. F. Edgar, “CFD for Simulation of Crosswind on the Efficiency of High Momentum Jet Turbulent Combustion Flames,” J. Environ. Eng., vol. 134, no. 7, pp. 561–571, Jul. 2008.
[12]       P. Gogolek, A. Caverly, R. Schwarts, D. Seebold, and J. Pohl, “Emissions from elevated flares–a survey of the literature,” 2010.
[13]       P. Gogolek and A. Hayden, “Performance of flare flames in a crosswind with nitrogen dilution,” J. Can. Pet. Technol., vol. 43, no. 8, pp. 43–47, 2004.
[14]       S. C. Herndon, D. D. Nelson, E. C. Wood, W. B. Knighton, C. E. Kolb, Z. Kodesh, V. M. Torres, and D. T. Allen, “Application of the Carbon Balance Method to Flare Emissions Characteristics,” Industrial & Engineering Chemistry Research, vol. 51, no. 39, pp. 12577–12585, Oct. 2012.
[15]       J. D. Smith, A. Suo-ahttila, S. Smith, and J. Modi, “Evaluation of the Air-Demand , Flame Height , and Radiation from low-profile flare tips using ISIS-3D,” in American – Japanese Flame Research Committees International Symposium, 2007.
[16]       M. Gómez-Mares, M. Muñoz, and J. Casal, “Axial temperature distribution in vertical jet fires.,” Journal of hazardous materials, vol. 172, no. 1, pp. 54–60, Dec. 2009.
[17]       M. Yaldizli, K. Mehravaran, and F. a. Jaberi, “Large-eddy simulations of turbulent methane jet flames with filtered mass density function,” Int. J. Heat Mass Transfer, vol. 53, no. 11–12, pp. 2551–2562, May 2010.
[18]       R. S. Barlow and J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Symposium (International) on Combustion, vol. 27, no. 1, pp. 1087–1095, Jan. 1998.