mmmmmmmmmmmmmmmm


 
[1] Han, J., Leshchinsky, D. (2006). “Stability analyses of geosynthetic-reinforced earth structures using limit equilibrium and numerical methods”. Proceedings of the 8th International Geosynthetics Conference, 18–22 September, Yokohama, Japan, pp. 1347–1350.
[2] Cheng, Y.M., Lau, C.K. (2008). “Slope Stability Analysis and Stabilization: New Methods and Insight”. Routledge, UK.
[3] Dawson, E.M., Roth, W.H., Drescher, A. (1999). “Slope stability analysis by strength reduction”. Geotechnique, 49 (6), pp. 835–840.
[4] Cala, M., Flisiak, J. (2001). “Slope stability analysis with FLAC and limit equilibrium methods”. In: Bilaux, Rachez, Detournay, Hart (Eds.), FLAC and Numerical Modelling in Geomechanics, A.A. Balkema Publishers, pp. 111–114.
[5] Han, J., Leshchinsky, D., Shao, Y. (2002). “Influence of tensile stiffness of geosynthetic reinforcements on performance of reinforced slopes”. In: Delmas, Gourc, Girard (Eds.), Proceedings of Geosynthetics – 7th ICG. Swets & Zeitlinger, Lisse, pp. 197–200.
[6] Cala, M., Flisiak, J. (2003a). Complex geology slope stability analysis by shear strength reduction. In: Brummer, Andrieux, Detournay, Hart (Eds.), FLAC and Numerical Modelling in Geomechanics. A.A. Balkema Publishers, pp. 99–102.
[7] Cala, M., Flisiak, J. (2003b). “Slope stability analysis with numerical and limit equilibrium methods”. In: Burczynski, Fedelinski, Majchrzak (Eds.), Computer Methods in Mechanics. CMM-2003.
[8] Shukha, R., Baker, R. (2003). “Mesh geometry effects on slope stability calculation by FLAC strength reduction method – linear and non-linear failure criteria”. In: Brummer, Andrieux, Detournay, Hart (Eds.), FLAC and Numerical Modelling in Geomechanics. A.A. Balkema Publishers, pp. 109–116.
[9] Han, J., Leshchinsky, D. (2004). “Limit equilibrium and continuum mechanics-based numerical methods for analyzing stability of MSE walls”. Proceedings of the 17th Engineering Mechanics Conference, ASCE, University of Delaware, Newark, Delaware, USA, June 13–16.
[10] Han, J., Sheth, A.R., Porbaha, A., Shen, S.L. (2004). “Numerical analysis of embankment stability over deep mixed foundations”. ASCE Geotechnical Special Publication No. 126: Geotechnical Engineering for Transportation Projects, GeoTrans 2004, ASCE, Los Angles, California, USA, July 26–31, pp. 1385–1394.
[11] Richards, K.S., Reddy, K.R. (2005). Slope failure of embankment dam under extreme flooding conditions: comparison of limit equilibrium and continuum models. Proceedings of the Geo-Frontiers 2005 Conference, ASCE, Austin, Texas.
[12] Apuani, T., Corazzatob, C., Cancelli, A., Tibaldi, A. (2005). “Stability of a collapsing volcano (Stromboli, Italy): limit equilibrium analysis and numerical modeling”. Journal of Volcanology and Geothermal Research, 144 (1–4), pp. 191–210.
[13] Han, J., Parsons, R.J., Sheth, A.R., Huang, J. (2005). “Factors of safety against deep-seated failure of embankments over deep mixed columns”. Proceedings of Deep Mixing 2005 Conference, Sweden, Vol. 1.2, pp. 231–236. May 23–25.
[14] Won, J., You, K., Jeong, S., Kim, S. (2005). “Coupled effects in stability analysis of pile–slope systems”. Computers and Geotechnics 32 (4), pp. 304–315.
[15] Han, J., Hong, Z.S., Shen, S.L. (2008). “Stability of levees over soft soil improved by deep mixing technology. GeoCongress 2008: Geosustainability and Geohazard Mitigation”. ASCE, pp. 716–723.
[16] Sun, J., Tian, X., Guan, X., Yu, Y., Yang, X. (2008). “Stability analysis for loosened rock slope of Jinyang Grand Buddha in Taiyuan, China”. Earth Science Frontiers, 15 (4), 227–238.
[17] Srivastava, A., Sivakumar Babu, G.L. (2009). “Effect of soil variability on the bearing capacity of clay and in slope stability problems”. Engineering Geology 108 (1–2), pp. 142–152.
[18] Dawson, E.M., Roth,W.H. (1999). “Slope Stability Analysiswith FLAC, In FLAC and Numerical Modeling in Geomechanics”. In: Detournay, C., Hart, R. (Eds.), Proceedings of the International FLAC Symposiumon Numerical Modeling in Geomechanics, Minneapolis, Minnesota, September 1999, A. A. Balkema, Rotterdam, pp. 3–9.
[19] Itasca Consulting Group, Inc. (2006). FLAC/Slope User's Guide, Version 5.0. 84p.
[20] Abusharar, S.W., Han, J. (2011). “Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay”, Engineering Geology, 120, pp.103-110.
[21] Hughes, J.M.O., Withers, N.J., Greenwood, D.A. (1975). “A field trial of the reinforcing effect of a stone column in soil. Geotechnique”. 25 (1), pp. 31–44.
[22] McKenna, J.M., Eyre, W.A., Wolstenholme, D.R. (1975). “Performance of an embankment supported by stone columns in soft ground”. Geotechnique, 25 (1), pp. 51–59.
 
[23] Rathgeb, E., Kutzner, C. (1975). “Some applications of the vibro-replacement process”. Geotechnique, 25 (1), pp. 45–50.
[24] Aboshi, H., Ichimoto, E., Harada, Y., Enoki, M. (1979). “The compozer, a method to improve characteristics of soft clays by inclusion of large diameter sand columns”. Proc. of 1st Int. Conf. on Soil Reinforcement, Paris, 1, pp. 211–216.
[25] Datye, K.R., Nagaraju, S.S. (1981). “Design approach and field control for stone columns”. Proc. of 10th Int. Conf. on SMFE, Stockholm, 3, pp. 637–640.
[26] Bergado, D.T., Panichayatum, B., Sampaco, C.L., Miura, N. (1988). “Reinforcement of soft Bangkok clay using granular piles”. Int. Geotech. Symp. on Theory and Practice of Earth Reinforcement, Kyushu, Japan, pp. 179–184.
[27] Bergado, D.T., Singh, N., Sim, S.H., Panichayatum, B., Sampaco, C.L., Balasubramaniam, A.S. (1990). “Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles”. Geotextiles and Geomembranes, 9 (3), pp. 203–231.
[28] Christoulas, S., Giannaros, C., Tsiambaos, G. (1997). “Stabilization of embankment foundations by using stone columns”. Geotechnical and Geological Engineering, 15 (3), pp. 247–258.
[29] Cooper, M.R., Rose, A.N. (1999). “Stone column support for an embankment on deep alluvial soils”. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 37 (1), 15–25.
[30] Priebe, H.J. (1995). “The design of vibro replacement”. Ground Engineering, 28 (12), pp. 31–37.
[31] Han, J., Ye, S.L. (2001). “A simplified method for computing consolidation rate of stone column reinforced foundations”. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127 (7), pp. 597–603.
[32] Zhang, Z., Han, J., Ye, G. (2014). “Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay”. Engineering Geology, V. 168, pp. 104-113.
[33] Sari, W., Abusharar, J.H. (2011). “Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay”. Engineering Geology, V, 120, Issues 1–4, pp. 103-110.
[34] Hassen, G., Gueguin, M., Buhan, P. (2013). “A homogenization approach for assessing the yield strength properties of stone column reinforced soils”. European Journal of Mechanics - A/Solids, V. 37, pp. 266-280.
[35] Deb, K., Dhar, A. (2011). “Optimum design of stone column-improved soft soil using multiobjective optimization technique”. Computers and Geotechnics, 38(1), pp. 50-57.
[36] Deb, K., Mohapatra, S.R. (2013) “Analysis of stone column-supported geosynthetic-reinforced embankments”. Applied Mathematical Modelling, 37(5), pp. 2943-2960.
[37] Ambily, A.P., Gandhi, S.R. (2007). “Behavior of stone columns based on experimental and FEM analysis”. Journal of Geotechnical and Geoenvironmental Engineering, 133 (4), pp. 405–415.