Analytical investigation of impact of blunt projectile with different ended into sandwich panels

Authors

Abstract

In this paper, an analytical model has been presented for energy absorption of sandwich panels under ballistic impact. Aluminum-foam and composite-foam sandwich panel are investigated in this paper. In analytical model three types of sticker including cylindrical projectile with flat, hemispherical and conical ended have been considered. It is supposed that top and bottom skins and foam core failure by mean resistive pressure. Energy absorption of sandwich panels is the sum of the energy absorbed by the skins and foam. Energy absorption of sandwich panel is calculated and energy balancing equation has been employed for determination the ballistic limit and residual velocity of projectiles. The results of ballistic limit and residual velocity computed by new model have good agreement with experimental results. Also the effect of projectile shape in energy absorption of sandwich panel has been investigated.

Keywords


1-      
 
[1] Backman,  M.E., Goldsmith, W. (1978). “The mechanics of penetration of projectiles into targets”. International Journal of Engineering Science, Vol. 16,  pp. 1-99.
[2] Corbett, G.G., Reid, S.R., Johnson, W. (1996). “Impact loading of plates and shells by free-flying projectiles: A review”. International Journal of Impact Engineering, Vol. 18, pp. 141-230.
[3] Forrestal, M.J., Okajima,  K., Luk, V.K. (1988). “Penetration of 6061-T651 aluminum targets with rigid long rods”. Applied  Mechanics, Vol. 55, pp. 755-760.
[4] Forrestal, M.J., Luk, V.K., Brar, N.S. (1990). “Perforation of aluminum armor plates with conical-nose projectiles”. Mechanics of Materials, Vol. 10,  pp. 97-105.
[5] Hoo Fatt, M.S., Lin, C. (2004). “Perforation of clamped, woven E-glass/polyester panels”. Composites Part B: Engineering, Vol. 35,  pp. 359-378.
[6] Naik, N.K., Doshi, A.V. (2008). “Ballistic impact behaviour of thick composites: Parametric studies”. Composite Structures, Vol. 82,  pp. 447-464.
[7] Naik, N.K., Shrirao, P., Reddy, B.C.K. (2005). “Ballistic impact behaviour of woven fabric composites: Parametric studies”. Materials Science and Engineering: A, Vol. 412,  pp. 104-116.
[8] Nemes, J.A., Eskandari, H., Rakitch, L. (1998). “Effect of laminate parameters on penetration of graphite/epoxy composites”. International Journal of Impact Engineering, Vol. 21,  pp. 97-112.
[9] Wu, Q.G., Wen, H.M., Qin, Y., Xin, S.H. (2012). “Perforation of FRP laminates under impact by flat-nosed projectiles”. Composites Part B: Engineering, Vol. 43,  pp. 221-227.
[10] لیاقت، غ.م.، هدایت رسا، س.، شانظری، ه. (1383)، تحلیل نفوذ پرتابه در پانلهای کامپوزیتی پلیمری (FRP) و ارائه مدل جدید، نشریه علمی و پژوهشی امیر کبیر، سال 15، شماره (ب-60).
[11] پل، م.ح.، لیاقت، غ.م.، صدیقی، م. (1391)، تحلیل تئوری فرآیند نفوذ پرتابه­های سر تخت در مواد مرکب شیشه/اپوکسی، نشریه علمی و پژوهشی مهندسی مکانیک مدرس، سال 12، شماره 2.
[12] رادمهر، د.، لیاقت، غ.م.، فعلی، س. (1390)، تحلیل فرآیند نفوذ مایل پرتابه­های تغییر شکل­ پذیر در اهداف فلزی چند لایه، نشریه علمی و پژوهشی مواد پرانرژی، سال 6، شماره 1.
 [13] Vaidya, U.K., Pillay, S., Bartus, S., Ulven, C.A., Grow, D.T., Mathew, B. (2006). “Impact and post-impact vibration response of protective metal foam composite sandwich plates”. Materials Science and Engineering: A, Vol. 428,  pp. 59-66.
[14] Hoo Fatt, M.S., Sirivolu, D. (2010). “A wave propagation model for the high velocity impact response of a composite sandwich panel”. International Journal of Impact Engineering, Vol. 37,  pp. 117-130.
[16] جعفری، س.س.، فعلی، س. (1391)، تحلیل سوراخ شدن ورق های ساندویچی کامپوزیت- فوم تحت برخورد پرتابه با دماغه مسطح، نشریه علمی و پژوهشی مواد پرانرژی، سال 7، شماره 3.
 [16] Feli, S., Namdari Pour, M.H. (2012). “An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact”. Composites Part B: Engineering, Vol. 43,  pp. 2439-2447.
[17] Wen, H., Reddy, T., Reid, S., Soden, P. (1997). “Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading”. Key Engineering Materials, Vol. 141,  pp. 501-552.
[18] Sabouri, H., Liaghat, G.H. (2010). “Comments on the article: “Ballistic impact of GLARE™ fiber–metal laminates”, by Michelle S. Hoo Fatt, Chunfu Lin, Duane M. Revilock Jr., Dale A. Hopkins [Composite Structures 61 (2003) 73–88]”. Composite Structures, Vol. 92,  pp. 600-601.
[19] Mamivand, M.,Liaghat, G.H. (2010). “A model for ballistic impact on multi-layer fabric targets”. International Journal of Impact Engineering, Vol. 37,  pp. 806-812.
[20] Zhao, H., Elnasri, I., Girard, Y. (2007). “Perforation of aluminium foam core sandwich panels under impact loading—An experimental study”. International Journal of Impact Engineering, Vol. 34,  pp. 1246-1257.
[21] Hanssen, A.G., Girard, Y., Olovsson, L., Berstad, T., Langseth, M. (2006). “A numerical model for bird strike of aluminium foam-based sandwich panels”. International Journal of Impact Engineering, Vol. 32,  pp. 1127-1144.
[22] Hou, W., Zhu, F., Lu, G., Fang, D. N. (2010) “Ballistic impact experiments of metallic sandwich panels with aluminium foam core”. International Journal of Impact Engineering, Vol. 37,  pp. 1045-1055.
[23] Wen, H.M. (2002). “Predicting the penetration and perforation of targets struck by projectiles at normal incidence*”. Mechanics of Structures and Machines, Vol. 30,  pp. 543-577.
[24] Wen, H.M. (2000). “Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes”. Composite Structures, Vol. 49,  pp. 321-329.