Modeling of ultrasonic testing Time of Flight Diffraction (ToFD) technique by Finite Element Method

Authors

university

Abstract

Time-of-flight diffraction (ToFD) is an ultrasonic nondestructive testing technique used for detection, sizing and location of defects in industrial parts. This method has better abilities and benefits than other nondestructive testing techniques. The advantages of this method are fast speed, low cost, better evaluation of defects without depending on their orientation and high accuracy in measuring defects. This technique is usually applied for thick sections (>15 mm), the application of the ToFD technique to thin sections like pressure vessels and piping requires simulation of this technique. Also doing practical experiments for specification appropriate parameters is very time consuming and expensive. Using simulation, one can perform the experiments with low cost and fast speed. In this paper, the ultrasonic time-of-flight diffraction (ToFD) technique has been modeled in two different parts by using the finite element method (FEM). The explicit solution method of the finite element package ABAQUS is used for solving the propagation problem of ultrasonic waves. Finite element modeling of ToFD technique and in general simulation of ultrasonic wave propagation, has provided a better understanding of the propagation of ultrasonic waves and their interaction with different discontinuities.

Keywords


 
[1] G. Baskaran, K. Balasubramaniam and C. Lakshmana Rao, “Shear Wave Time of Flight Diffraction
               (S-ToFD) Technique", NDT&E International Vol. 39, 2006.
[2] K. S. Venkataraman and Alex Mclay, "The Performance of the Time of Flight Diffraction (ToFD)                           Technique in Various International Round Robin Trails and the Continuing Research Work                            Underway", Proceeding of the 14th World Conference on Non Destructive Testing, New Delhi, India,           December  8-13, 1996, A. A. Balkeman, Rotterdam, 1997.
[3] A. Hecht, "Time of Flight Diffraction Technique (ToFD)- An ultrasonic testing method for all applications",                         www.ndt.net, Vol. 2, No. 9, September 1997.
[4] L. J. Bond, “Methods for the computer modelling of ultrasonic waves in solids”, Research techniques  in NDT, Vol. 6, pp. 107-150, 1982.
[5] R. Ludwig, W. Lord, “Finite-element study of ultrasonic wave propagation and scattering in a aluminum block”, Materials Evaluation, Vol. 46, pp. 156-161, 1988.
[6] H. Yim, Y. Choi, “Simulation of ultrasonic waves in various types of elastic media using the mass spring lattice Model”, Materials Evaluation, Vol. 58, pp. 889-896, 2000. 
[7] H. Yim, Y. Sohn, “Numerical simulation and visualization of elastic waves using mass-spring lattice  model IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, pp. 549-558, 2000.
[8] S. Lin, H. Fuutomi and T. Ogata, “Analysis of wave propagation for the ToFD method By finite element                        method: optimization of test configuration and proposal of a new ToFD method,” Nondestructive                                                           Evaluation, Vol. 25, 2006.
[9] G. Baskaran, C. Lakshmana Rao and K. Balasubramaniam,”Simulation of the ToFD Technique Using the
               Finite Element Method”, Insight,  Vol. 49, No. 11, November 2007.
[10] Getting started with Abaqus, Interactive edition, version 6.7, Dassault Systems 2007.
]11[ هنرور ف.، یاقوتیان ا. ،”پردازش تصاویر روبش B حاصل از آزمون TOFD با استفاده از روش دیکانولوشن وینر و تکنیک برونیابی طیفی اتورگرسیو“، اولین کنفرانس بین المللی بازرسی فنی و آزمون غیر مخرب، تهران، 1 و 2 آبان 1386.
[12] J. P. Charlesworth and J. A. G. Temple, “Engineering  Application of Ultrasonic Time-of-Flight Diffraction”, Second Edition, Research Studies  Press Ltd., 2001.
[13] A. Hecht, “Time of Flight Diffraction Technique (ToFD) - An Ultrasonic Testing Method for all                                                  Applications?’’, NDT.net, Vol. 2, No. 9, September 1997.
[14] F. Honarvar and S. Khorasani, “Simulation of Time-of-Flight Diffraction (ToFD) Technique by Finite                             Element Method,” Simulation in NDT, Online Workshop in www.ndt.net, September 2010.
[15] J. Blitz and G. Simpson, “Ultrasonic Methods of Non-destructive Testing”, Chapman & hall, 1996.