Investigation of the Effects of Viscoelastic Support Properties Simulated by the Generalized Kelvin-Voigt Model on the Axial Vibration of a Rod

Authors

Abstract

The application of Viscoelastic (VE) supports in order to dampening dynamic forces and energy dissipation has been investigated herein. Properties of viscoelastic substances are important in the quality and quantity of the dissipation. The viscoelastic materials were described using the generalized Kelvin-Voigt mechanical model and the resulting governing equations were solved using the finite element method in time domain. To investigate the effects of the viscoelastic characteristics of supprots on axial vibration, dynamic and quasi-steady analysis of a rod subject to axial step excitations was carried out. Finally, some important criteria were presented to improve the performance of these substances in energy dissipation. In addition, axial vibration of an elastic and a viscoelastic rod with end and middle VE supports subject to harmonic excitations were investigated. It reveals that the use of VE supports considerably damps out structural vibrations, especially at low frequencies. Whereas in high frequencies, the amount of the energy dissipation depends on the retardation times of the Kelvin-Voigt elements.

Keywords


 
[1] Keramat, A., Tijsseling, A.S., Hou, Q., Ahmadi, A., (2012). “Fluid–structure interaction with pipe-wall viscoelasticity during water hammer”. Journal of fluids and structures, Vol. 28, pp. 434-455.
[2] Keramat, A., Ahmadi, A. (2012). “Axial wave propagation in viscoelastic bars using a new finite-element-based method”. J Eng Math, Vol. 77, pp. 105-117.
[3] Moireau, P.,  Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., & Gerbeau, J.F. (2012), “External tissue support and fluid–structure simulation in blood flows”. Biomech Model Mechanobiol, Vol. 11, pp. 1-18.
[4] Vostroukhov, A.V., Metrikine, A.V. (2003). “Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track”. International Journal of Solids and Structures, Vol. 40, pp. 5723–5752.
[5] Tillema, H.G. (2003). “Noise reduction of rotating machinery by viscoelastic bearing supports”. PhD thesis, University of Twente ISBN: 90-36518776.
[6] Friswell, M.I., Sawicki, J.T., Inman, D.J., Lees, A.W. (2006). “The response of rotating machines on viscoelastic supports”. ISMA.
[7] Prak, J. (2007). “Influence of support viscoelastic properties on the structural wave propagation”. J Mech Sci Technol Vol. 21, pp. 2117-2124.
[8] Wineman, A.S., Rajagopal, K.R., (2000). “Mechanical response of polymers: an introduction”. Cambridge University Press, Cambridge.
 [9] Sim, W., Lee, S. (2005). “Finite element analysis of transient dynamic viscoelastic problems in time domain”. J Mech Sci Technol, Vol. 19(1), pp. 61–71.
[10] Lee, U., Oh, H. (2005). “Dynamics of an axially moving viscoelastic beam subject to axial tension”. International Journal of Solids and Structures, Vol. 42, pp. 2381–2398.
[11] Fenander, A. (1996). “Modal synthesis when modeling damping by use of fractional derivatives”. Am Inst Aeronaut Astronaut J, Vol. 34, pp. 1051–1054.
[12] See, H. (2001). “Advances in measuring linear viscoelastic properties using novel deformation geometries and Fourier transform  technique”. Rheol J, Vol. 13(2), pp. 67–81.
[13] Ma, H. (2008). “Exact solutions of axial vibration problems of elastic bars”. Int J Numer Methods Eng, Vol. 75(2), pp. 241–252.
[14] Leonov, A.I. (1988). “Propagation of nonlinear waves along a viscoelastic bar”. Rheol Acta, Vol. 27(4), pp. 335–350.
[15] Fan, Z.J., Kim, K.J.  (1997). “Investigation of Effects of Viscoelastic Boundary Supports onTransient Sound Radiated from a Rectangular Plate by Modal Strain Energy Method”. KSME International Journal, Vol. 11(5), pp. 530-536.
[16] Fan, Z.J., Lee, J.H., Kang, K.H., Kim, K.J. (1998). “The Forced Vinration of a Beam with Viscoelastic boundary Supports”. Journal of Sound and Vibration, Vol.  210(5), pp.  673-682. 
[17] Majorana, C.E., Pomaro, B. (2011). “Dynamic stability of an elastic beam with visco-elastic translational and rotational support”. Engineering Computations, Vol. 28(2), pp. 114–129.
[18] Turgut, K. (2005). “Determination of the steady-state response of viscoelastically supported cantilever beam under sinusoidal base excitation”. J Sound Vib, Vol. 281(3), pp. 1145–1156.
[19] Koutsawa, Y., Daya, E.M. (2007). “Static and free vibration analysis of laminated glass beam on viscoelastic supports”. Int J Solids and Struct, Vol. 44(25), pp. 8735–8750.
[20] Brinson, H.F., Brinson, L.C. (2008). “polymer Engineering science and Viscoelasticity- An Introduction”. Springer.
[21] Reddy, J.N. (1993). “An Introduction to the Finite Element Method”.  Texas A&M University.