1-
[1] Eringen, A.C. (1983). “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”. Journal of Applied Physics, Vol. 54, pp. 4703-4710.
[2] Ghorbanpour Arani, A., Shajari, A.R., Amir, S., Loghman, A. (2012). “Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT conveying fluid”. Physica E, Vol. 45, pp. 109–121.
[3] Wang, CM., Zhang, YY., He, XQ. (2007). “Vibration of nonlocal Timoshenko beams”. Nanotechnology, Vol. 18, pp. 9-18.
[4] Mohamadimehr, M., Rahmati, A.H. (2013). “Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric”. Turkish Journal of Engineering & Environmental Sciences, Vol. 37, pp. 1-15.
[5] Reddy, J.N. (2007). “Nonlocal theories for bending, buckling and vibration of beams”. International Journal of Engineering Science, Vol. 45, pp. 288–307.
[6] Mohamadimehr M., saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A., Han, Q. (2010). “Torsional buckling of a DWCNT embedded on Winkler and Pasternak foundations using nonlocal theory”. Journal of Mechanical Science and Technology, Vol. 24, pp. 1289-1299.
[7] Khodami Maraghi, Z., Ghorbanpour Arani, A., Kolahchi, R., Amir, S., Bagheri, M.R. (2013). “Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid”. Composites: Part B, Vol. 45, pp. 423–432.
[8] Wang, L. (2012). “Surface effect on buckling configuration of nanobeams containing internal flowing fluid:A nonlinear analysis”. Physica E, Vol. 44, pp. 808–812.
[9] Gheshlaghi, B., Hasheminejad, S.M. (2011). “Surface effects on nonlinear free vibration of nanobeams”. Composites: Part B, Vol. 42, pp. 934–937.
[10] Wang, L. (2010). “Vibration analysis of fluid-conveying nanotubes with consideration of surface effects”. Physica E, Vol. 43, pp. 437–439.
[11] Samadi, F., Farshidianfar, A. (2011). “Free vibration of carbon nanotubes conveying viscous fluid using nonlocal Timoshenko beam model”. First International Conference on Acoustics and Vibration, Amirkabir University of Tecknology, 21-22 Dec.
[12] Kuang, YD., He, XQ., Chen, CY., Li, GQ. (2009). “Analysis of nonlinear vibrations of doublewalled carbon nanotubes conveying fluid”. Computer Material Science, Vol. 45, pp. 875–880.
[13]Reddy, JN, Wang, CM. (2004). “Dynamocs of fluid-conveying beams: governing equations and finite element models”. Singapore, Centre for Offshore Research and Engineering.
[14] Mahmoud, A.A., Awadalla, R., Nassar, M.M. (2011). “Free vibration of non-uniform column using DQM”. Mechanics Research Communication, Vol. 39, pp. 443–448.
[15] Yücel, U., Boubaker, K. (2012). “Differential quadrature method (DQM) and Boubaker Polynomials Expansion Scheme (BPES) for efficient computation of the eigenvalues of fourth-order Sturm–Liouville problems”. Applied Mathematical Modelling, Vol. 36, pp. 158–167.
[16] Haftchenari, H., Darvizeh, M., Darvizeh, A., Ansari, R., Sharma, C.B. (2007). “Dynamic analysis of composite cylindrical shells using differential quadrature method (DQM)”. Composite Structure, Vol. 78, pp. 292-298.
[17] Danesh, M., Farajpour, A., Mohammadi, M. (2012). “Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method”. Mechanics Research Communication, Vol. 39, pp. 23-27.
[18] Abdollahian, M., Ghorbanpour Arani, A., Mosallaie Barzoki, A.A., Kolahchi, R., Loghman, A. (2013). “Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM”. Physica B, Vol. 418, pp. 1-15.
[19] Mohammadimehr, M., Saidi, A. R., Ghorbanpour Arani, A., Arefmanesh, A., Han, Q. (2011). “
Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory”. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, Vol. 225, pp. 498-506.
[20] Rahmati, A.H., Mohammadimehr, M. (2014). “Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM”. Physica B, Accepted.