Analytical Efficiency Comparison of Multi-Layer Composite Pin Fins under the Different Thermal Boundary Conditions

Authors

Abstract

In this paper, steady heat transfer in multi-layer composite pin fins has been investigated. The appropriate analytical solution for heat conduction in pin fins under the all common thermal boundary conditions has been introduced. The efficiency of pin fins in different boundary conditions of fin's tip has been compared. Placement angle of fibers in each layer as well as a composite material, consisting of fiber and matrix, can be changed layer by layer. In each layer the effects of layers' arrangement based on composite material and fibers' angle has been investigated in details. The impact of environmental and geometric parameters affecting the efficiency of the fin such as heat transfer coefficient, the conductivity of the material used as a filler and fiber, length to diameter ratio of fin thoroughly studied, and the related charts are plotted.

Keywords


 
[1] Harper, D.R., Brown, W.B. (1992), “Mathematical equations for heat conduction in the fins of air-cooled engines”,  N.A.C.A. Report, pp. 158.
[2] Jacob, M. (1949), “Heat Transfer”, Wiley, New York.
[3] Gardner, K.A. (1945), “ Efficiency of extended surfaces”.  Trans. ASME, Vol. 67, pp. 621-631.
[4] Gates, R.R., Sepsy, C.F., Huffman, G.D. (1967), “Heat transfer and pressure loss in extended surface heat exchangers operating under frosting conditions, Part I, Literature survey, test apparatus, and preliminary results”.  ASHRAE Trans., pp. 73, Pt II, 1.2.1-1.2.13.
[5] Huffman, G.D., Sepsy, C.F. (1967), “Heat transfer and pressure loss in extended surface exchangers operating under frosting conditions, Part II, Data analysis and correlation”.  ASHRAE Trans., pp.73, pt II, 1.3.1-1.3.16.
[6] Lalot, S., Tournier, C., Jensen, M. (1999), “Fin efficiency of annular fins made of two materials”.  Int. J. Heat Mass Transfer,  Vol. 42, pp. 3461–3467.
[7] Corte­s, C., Campo, A., Diez , L.I. (2002), “ Computation of the heat release from fins made of a substrate and a high thermal conductivity coating, in Proceedings of the Twelfth International Heat Transfer Conference, Grenoble, France.
[8] Campo, A. (2001),” Statistical heat transfer from uniform annular fins with high thermal conductivity coating”.  AIAA J. Thermophys, Heat Transfer, Vol. 15, pp. 242–245.
[9] Tu, P.,  Inaba, H.,  Horibe, A., Li, Z., Haruki, N. (2006), “Fin efficiency of an annular fin composed of a substrate metallic fin and a coating layer”.  ASME J, Heat Transfer, Vol. 128, pp. 851–854.
[10] Bar-Cohen, B.R. (2007), “Orthotropic Thermal Conductivity Effect on Cylindrical Pin Fin”. Int. J. Heat and Mass Transfer, Vol. 50, No. 2, pp. 1155-1162.
[11] Hsieh, M.H., Ma, C.C. (2002), “Analytical investigations for heat conduction problems in anisotropic thin-layer media with embedded heat sources”. Int. J. Heat and Mass Transfer, Vol. 45, pp. 4117–4132.
[12] Ma, C.C., Chang, S.W. (2004), “Analytical exact solutions of heat conduction problems for anisotropic multi-layered media”, Int. J. Heat and Mass Transfer, Vol. 47, pp. 1643–1655..
[13] SALT, H., (1983), “Transient conduction in a two-dimensional composite slab-I. Theoretical development of temperature modes”. Int. J. Heat and Mass Transfer, Vol. 26, pp. 1611–1616.
[14] SALT, H., (1983), “Transient conduction in a two-dimensional composite slab- II. Physical interpretation of temperature modes”. Int. J. Heat and Mass Transfer, Vol. 26, pp. 1617–1623.
[15] Monte, F.D. (2000), “Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach”. Int. J. Heat and Mass Transfer, Vol. 43, pp. 3607–3619.
[16] Kayhani, M.H., Norouzi, M., Amiri Delouei, A. (2012), “A general analytical solution for heat conduction in cylindrical multilayer composite laminates”. Int. J. Thermal  Sciences, Vol. 52, pp. 73–82.
]17 [ کیهانی، م.ح.، نوروزی، م.، امیری دلوئی، ا. (1390) ، بررسی تحلیلی انتقال حرارت غیر دائمی اورتوتروپیک پین فین­های کامپوزیتی، نشریه فنی و مهندسی مدرس- مکانیک، دانشگاه تربیت مدرس، دوره 11، شماره 4، ص­ص 21-32.
[18] Kayhani, M.H., Norouzi, M., Amiri Delouei, A. (2010), “An exact solution of axi-symmetric conductive heat transfer in cylindrical composite laminate under the general boundary condition”. Word Acad. Sci. Eng. Technol., Vol. 69, pp. 55–62.
[19] Kayhani, M.H., Shariati, M., Norouzi, M., Demneh, M.K. (2009), “Exact solution of conductive heat transfer in cylindrical composite laminate”. Heat Mass Transfer, Vol. 46, pp. 83–94.
]20[کیهانی، م.ح.، امیری دلوئی، ا. (1392)، بررسی تحلیلی انتقال حرارت پایای هدایتی نامتقارن در استوانه­های کامپوزیتی به­روش جداسازی متغیرها ، نشریه فنی و مهندسی مدرس- مکانیک، دانشگاه تربیت مدرس، دوره 13، شماره 5، ص­ص 14-26.
]21[کیهانی، م.ح.، شریعتی، م.، نوروزی، م. (1388)، حل تحلیلی انتقال حرارت پایدار هدایتی در یک استوانه کامپوزیتی، نشریه فنی و مهندسی مدرس- مکانیک، دانشگاه تربیت مدرس، شماره 37، ص­ص 135-151.
[22] Norouzi M., Amiri Delouei A., Seilsepour M. (2013), “A general exact solution for heat conduction in multilayer spherical composite laminates”. Composite Structures , Vol.106, pp. 288–295.
[23] Singh S., Jain P.K., Rizwan-uddin (2008), “Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction”. Int. J. Thermal Sciences, Vol. 47, pp. 261–273.
[24] Jain P.K., Singh S., Rizwan-uddin (2010), “An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates”. Int. J. Heat and Mass Transfer, Vol. 53, pp. 2133–2142.
[25] Incropera F.P., Dewitt, D.P. (2011), “Introduction to Heat Transfer”. John Wiley & Sons, New York.
[26] Shives, G., et al. (2004), “Comparative thermal performance evaluation of graphite/epoxy fin heat sinks”. in: Proc. of intersociety for thermal conference (ITHERM), pp. 410–417, 2004.
[27] Weber, E. (1999), “Development and modeling of thermally conductive polymer/carbon composites”, Ph.D. thesis, Chemical Engineering Department, Michigan Technological University, Michigan.