4H-SiC MESFET with darin-side and undoped region for modifying charge distribution and high power applications

Authors

semnan university

Abstract

In this paper, a novel MESFET with an undoped region (DS-UR) and drain side-double recessed 4H-SiC metal semiconductor field effect transistor (MESFET) is presented. The key idea in this work is to modify the charge concentration and electric field distribution to improving breakdown voltage (VBR) and the maximum output power density (Pmax). The charge distribution plays an important role in determining device characteristics. Two-dimensional and two-carrier device simulation demonstrate that the VBR and Pmax are improved about 57% and 50% compared to source side-double recessed 4H-SiC MESFET (SS) structure, respectively which are important for high power applications.

Keywords


 
 [1] Hjelmgrn, H., Allerstam F., Andersson, K., Nilsson, P. A., and Rorsman N.( 2010). ” Transient simulation of microwave, SiC MESFETs with improved trap models,” IEEE Trans.Electron Devices, vol.  57,  pp.  729–32.
[2] Sriram, S., Hagleitner, H., Namishia, D., Alcorn, T., Smith T., and Pulz, B. (2009). “High-gain SiC MESFETs using source-connected field plates”, IEEE Trans. Electron Devices, vol. 30, pp. 952–3.
[3] Zhu, C.L., Rusli E., and Zhao P., (2007). “Dual-channel 4H-SiC metal semiconductor field effect transistors,” Solid-StateElectron, vol. 51, pp. 343–4.
[4] Rusli, E., Zhu, C.L., Zhao, P., and Xia J. H., (2006). “Characterization of SiC MESFETs with narrow channel layer”,  Microelectron. Eng, vol. 83, pp. 72–4.
[5] Zhang, J., Ye, Y., Zhou, C., Luo, X., Zhang, B., and Li, Z., (2008). “High breakdown voltage 4H-SiC MESFETs with floating metal strips,” Microelectron. Eng, vol. 85, pp. 89–92. 
[6] Deng, X., Zhang, B., Li, Z., and Chen, Z., (2008).”Two-dimensional analysis of the surface state effects in 4H-SiC MESFETs,” Microelectron. Eng, vol. 85, pp. 295–9.
[7] Zeinab Ramezani, Ali A. Orouji, P. Keshavarzi,) 2014 .(”A novel double-recessed 4H-SiC MESFET Using Scattering the Electric Field for High Power and RF Applications” Physica E: Low-dimensional Systems and Nanostructures, vol. 59, pp. 202–209.
[8] Amirhossein Aminbeidokhti and Ali A. Orouji, )2012(. “A new double-recessed 4H-SiC MESFET with superior RF characteristics, International Journal of Electronics, pp. 1-9.
[9] Zhu, C.L., Rusli, E., Tin, C.C, Zhang, G. H., Yoon, S.F., and Ahn, J., (2006). “Improved performance of SiC MESFETs using double-recessed structure,” Microelectron. Eng, vol. 83, pp. 92–5. 
[10] ATLAS user’s manual: Device simulation software, (2012). Silvaco International.
[11] Ruff, M., Mitlehner, H., and Helbig, R., (1994). “ SiC devices: physics and numerical simulation,”  IEEE Trans. Electron Devices, vol. 41, pp. 1040–54.
[12] Baliga, B.J., (1987). Modern Power Devices (New York: Wiley Interscience).
[13] Mahabadi, S.E.J., Orouji,  A. A, Keshavarzi, P.,and Moghadam, H. A, (2011). ”A new partial SOI-LDMOSFET with a modified buried oxide layer for improving self-heating and breakdown voltage,” Semicond. Sci. Technol, vol. 26, pp.  95005–16. 
[14] Zhang, J., Luo, X., Li, Z., and Zhang, B., (2007). “Improved double-recessed 4H-SiC MESFETs structure with recessed source/drain drift region,” Microelectron. Eng, vol. 84, pp. 2888–91.
[15] Orouji, A. A., Aminbeidokhti, A., (2011). “A novel double-recessed 4H-SiC MESFET with partly undoped space region,” Superlattices and Microstructures, vol. 50, pp. 680–690. 
[16] Sze, S.M., Ng, K.K., (2007). Physics of Semiconductor Devices, third ed., John Wiley & Sons, New Jersey,  pp. 386–398.