Numerical simulation of subsonic jet ejector

Authors

Abstract

An ejector is a pumping device that uses a high-speed primary fluid jet to entrain a secondary stream. In this work, using CFD we simulate subsonic air – air ejector numerically. Governing equations including continuity, momentum and energy equations are solved numerically based on finite volume method. Numerical simulation is carried out in 3 dimensions and flow is assumed to be conservative, viscous and turbulent. To simulate turbulences, Reynolds averaged Navier–Stokes, K-ε Standard, K-ε RNG, K-ε Realizable, K-ω Standard and K-ω SST are applied. Ejecting coefficient for various pressure ratios was an effective parameter which was used to validate numerical results. Error was at its minimum for K-ε RNG turbulence model. Therefore, it was used to simulate turbulences. After validating results, we analyzed the effect of geometrical parameter of diffuser outlet diameter and divergence angle on performance of subsonic air – air ejector. Results demonstrate that in addition to divergence angle, diffuser outlet diameter has a significant influence on performance and efficiency of such devices.

Keywords


 
 [1] Kroll, A.E. (1947). “The design of jet pumps”. Chemical Engineering Progress, vol. 1, p. 21.
[2] Meakhail, T., Zien, Y., Elsallak, M., AbdelHady, S. (2008). “Experimental study of the effect of some geometric variables and number of nozzles on the performance of a subsonic air–air ejector”. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 222, pp. 809-818.
[3] Riffat, S., Omer, S. (2001). “ CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid”. International journal of energy research, vol. 25, pp.115-128.
[4] Yadav, R.L., Patwardhan, A.W. (2008). “Design aspects of ejectors: Effects of suction chamber geometry”. Chemical Engineering Science, vol. 63, pp. 3886-3897.
[5] Li, C., Li, Y., Wang, L. (2012). “Configuration dependence and optimization of the entrainment performance for gas–gas and gas–liquid ejectors”. Applied Thermal Engineering, vol. 48, pp. 237-248.
[6] Cramers, P., Beenackers, A. (2001). “Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas–liquid ejectors”. Chemical Engineering Journal vol. 82, pp.131-141.
[7] Elgozali, A., Linek, V., Fialova, M., Wein, O., Zahradnı́k, J. (2002). “Influence of viscosity and surface tension on performance of gas–liquid contactors with ejector type gas distributor”. Chemical Engineering Science vol. 57, pp. 2987-2994.
[8] Gamisans, X., Sarrà, M., Lafuente, F.J. (2004). “Fluid flow and pumping efficiency in an ejector-venturi scrubber”. Chemical Engineering and Processing: Process Intensification vol. 43, pp. 127-136.
[9] Rusly, E., Aye, L., Charters, W., Ooi, A. (2005). “CFD analysis of ejector in a combined ejector cooling system”. International Journal of Refrigeration vol. 28, pp.1092-1101.
[10] Li, M., Christofides, P.D. (2005). “Multi-scale modeling and analysis of an industrial HVOF thermal spray process”. Chemical Engineering Science vol. 60, pp. 3649-3669.
[11] Das, S.K., Biswas, M.N. (2006). “Studies on ejector-venturi fume scrubber”. Chemical Engineering Journal vol. 119, pp. 153-160.
[12] Sriveerakul, T., Aphornratana, S., Chunnanond, K. (2007). “Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results”. International Journal of Thermal Sciences vol. 46, pp. 812-822.
[13] Sriveerakul, T., Aphornratana, S., Chunnanond, K. (2007). “Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries”. International Journal of Thermal Sciences vol. 46, pp. 823-833.
[14] Varga, S., Oliveira, A.C., Diaconu, B. (2009). “Numerical assessment of steam ejector efficiencies using CFD”. International Journal of Refrigeration vol. 32, pp. 1203-1211.
[15] Varga, S., Oliveira, A.C., Diaconu, B. (2009). “Influence of geometrical factors on steam ejector performance–a numerical assessment”. International Journal of Refrigeration vol. 32, pp. 1694-1701.
[16] Zhu, Y., Cai, W., Wen, C., Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering pp. 29, vol. 898-905.
[17] Chen, W., Chong, D., Yan, J., Liu, J. (2011). Numerical optimization on the geometrical factors of natural gas ejectors. International Journal of Thermal Sciences vol. 50, pp. 1554-1561.
[18] Ruangtrakoon, N., Thongtip, T., Aphornratana, S., Sriveerakul, T. (2012). “CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle”. International Journal of Thermal Sciences.
[19] Zhang, X., Jin, S., Huang, S., Tian, G. (2009). “Experimental and CFD analysis of nozzle position of subsonic ejector”. Frontiers of Energy and Power Engineering in China vol. 3, pp. 167-174.
]20[ موسوی، س.م.ص، (1389)، طراحی و ساخت جت اجکتور، رساله کارشناسی، دانشگاه سمنان.
[21] Hemidi, A., Henry, F., Leclaire, S., Seynhaeve, J.-M., Bartosiewicz, Y. (2009). “CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation”. Applied Thermal Engineering vol. 29, pp. 1523-1531.
[22] Li, X., Wang, T., Day, B. (2010). “Numerical analysis of the performance of a thermal ejector in a steam evaporator”. Applied Thermal Engineering vol. 30, pp. 2708-2717.
[23] Yang, X., Long, X., Yao, X. (2012). “Numerical investigation on the mixing process in a steam ejector with different nozzle structures”. International Journal of Thermal Sciences vol. 56, pp. 95-106.
[24] Fluent 6.3.26 Documentation, Fluent User’s Guide, 2006.