م
م
[1]
AlRashidi, M. R., El
-
Hawary, M. E.
(2007).
“
Hybrid
Particle
Swarm Optimization Approach for Solving the
Discrete OPF Problem
Considering the Valve Loading Effects
”
.
IEEE Transactions on Power
Systems, Vol. 22
, No. 4, pp. 2030
-
2038
.
[
2
]
Rao, S. S. (2009).
“
Engineering Optimization: Theory and Practice
”.
4
th
Edition, John Wiley and Sons
.
[
3
]
Prugel
-
Bennett, A. (2010).
“
Benefits of a Population: Five Mechanisms that Advantage Population
-
Based
Algorithms
”.
Evolutionary Computation, IEEE Transactions on, Vol. 14, No. 4, pp. 500
-
517
.
[
4
]
S. Kirkpat
rick, C.D. Gela
tto, M.P. Vecchi.
(1983). “
Optimization by simulated annealing
”.
Science 220, pp.
671
–
680
.
[
5
]
J. Kennedy, R.C. Eberhart.
(1995).
“
Particle swarm optimization
”.
i
n: Proceedings of IEEE International
Conference on Neural Networks,
vol. 4
, pp. 1942
–
1948
.
[
6
]
M. Melanie.
(1999).
“
An Introduction to Genetic Algorithms
”.
Massachusetts: MIT Press
.
[
7
]
M. Dorigo and C. Blum,
(2005).
“Ant colony
optimization theory: A survey”.
Theoretical Computer
Science, 344,
pp. 243
–
278
.
[
8
]
Pham DT, Ghanbarzadeh A, Koc E, Ot
ri S, Rahim S and Zaidi M.
(2005).
“
The Bees Algorithm
”
. Technical
Note, Manufacturing Engineering Centre, Cardiff University,
UK
.
[
9
]
Kang Seok Lee, Zong Woo Geem,
(2005).
“
A new meta
-
heuristic algorithm for continuous engineering
optimization: harmony se
arch theory and practice
”.
Comput. Methods Appl. Mech. Engrg. 194,
pp.
3902
–
3933
.
[
10
]
Esmat Rashedi, Hossein
Nezamabadi
-
pour, Saeid Saryazdi. (2009).
“
GSA: A Gravitational Search
Algorithm
”.
Information Sciences 179,
pp 2232
–
2248
.
[
11
]
Yang, X. S. (2009).
“
Firefly Algorithms for Multimodal Optimization
”.
Stochastic Algorithms:
Foundations and Applications, Vol. 5792, pp. 169
-
178
.
[
12
]
Kaveh, A., Talatahari, S. (2010).
“
A Novel Heuristic Optimization Method: Charged System Search
”.
Acta
Mech, Vol. 213, pp.
267
–
289
.
[
13
]
Eskandar, H., Sadollah, A
., Bahreininejad, A., Hamdi, M. (2012).
“
Water Cycle Algorithm
–
A novel
Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems
”.
Computers and Structures, Vol. 110, pp. 151
–
166
.
[
14
]
Kaveh, A., Khayatazad, M. (2012).
“
A New Meta
-
Heuristic Method: Ray Optimization
”.
Computers and
Structures, Vol. 112, pp. 283
-
294
.
[
15
]
Kaveh, A., Farhodi, N. (2013).
“
A New Optimization Method: Dolphin Echolocation
”.
Advances in
Engineering Software, V
ol. 59, pp. 53
-
70
.
[
16
]
Kaveh A, Talatahari S.
(2009).
“
Size optimization of space trusses using Big Bang
–
Big Crunch algorithm
”.
Comput Struct; 87:
pp.
1129
-
40
.
[
17
]
Rahami H, Kaveh A, Gholipour Y.
(2008).
“
Sizing, geometry and topology optimization of
trusses via
force method and genetic algorithm
”.
Eng Struct; 30:
pp.
2360
-
9
.
[
18
]
Rasmussen MH, Stolpe M.
(2008).
“
Global optimization of discrete truss topology design problems using a
parallel cut
-
and
-
branch method
”.
Comput Struct; 86:
pp.
1527
-
38
.
[
19
]
G.I.N. Rozvany, M. Zhou. (1996).
“
Advances in overcoming computational pitfalls in topology
optimization
”.
in: Proc. of the Sixth AIAA/NASA/ISSMO Symp. on Multi
-
disc. Anal. and Optim
.
,
pp. 1122
–
1132
.
[
20
]
L. Gil, A. Andreu. (2001).
“
Shape and cross
-
section
optimization of a truss structure
”.
Comput. Struct. 79,
pp. 681
–
689
.
[
21
]
N.L. Pedersen, A.K. Nielsen. (2001).
“
Optimization of practical trusses with constraints on
eigenfrequencies, displacements, stresses and buckling
”.
report
no. 664, Technical University of
Denmark
.
[
22
]
W.H. Z
hang, M. Domaszewski, C. Fleury. (1998).
“
A new mixed convex approximation method with
applications for truss configuration optimization
”.
Struct. Optim. 15, pp. 237
–
241
.
[
23
]
Goldberg DE, Samtani MP.
(
1986).
“
Engineering optimization via genetic algorithm
”.
electronic
computation. New York: ASCE
;
p
p. 471
–
6
.
[
24
]
Jenkins WM.
(1991).
“
Towards structural optimization via the Genetic algorithm
”
. Comput Struct
;40:
pp.
1321
–
7
.
[
25
]
Adeli H, Cheng NT.
(1993)
.
“
Integrated genetic algorithm for optimization of space structures
”
. J
Aerospace Eng, ASCE;
6:
pp.
315
–
28
.
[
26
]
Rajeev S, Krishnamoorthy
. (1992).
“
CS. Discrete optimization of structures using genetic algorithms
”
. J
Struct Eng, ASCE;
118:
pp.
1233
–
50
.
[
27
]
Wu S
-
J, Chow P
-
T.
(1995).
“
Integrated discrete and configuration optimization of trusses using genetic
algorithms
”
. Comput Struct;
55(4):
pp.
695
–
702
.
[
28
]
Hwang S
-
F, He R
-
S.
(2006).
“
A hybrid real
-
parameter genetic algorithm for function optimization
”
. Adv
Eng Infor;
20:
pp.
7
–
21
.
[
29
]
Tang W, Tong L, Gu Y.
(2005).
“
Improved genetic algorithm for design optimization of truss structures
with sizing, shape and topology variables
”
. Internat J Numer Methods Engrg;
62:
pp.
1737
–
62
.
[
30
]
Hasanc ̧ebi O, Erbatu
r F.
(2001).
“
Layout optimization of trusses using improved GA methodologies
”
.
Acta Mech;
146:
pp.
87
–
107
.
[
31
]
Kaveh A, Kalatjari V.
(2004). “
Size/geometry optimization of trusses by the force method and genetic
algorithm
”
. Z Angew Math Mech;
84(5):
pp.
347
–
57
.
[
32
]
Li LJ, Huang ZB, Liu F.
(2009).
“
A heuristic particle swarm optimization method for truss structures with
discrete variables
”.
Comput Struct;
87:
pp.
435
-
43
.
[
33
]
Y.M. Xie
, G.P. Steven. (1997).
“
Evolutionary Structural Optimization
”.
Springer,
Berlin
.
[
34
]
D.N. Chu. (1997).
“
Evolutionary structural optimization method for systems with stiffness and
displacement constraints
”
. Ph.D. Thesis, Department of Civil and Building Engineering, Victoria
University of Technology, Melbourne, Australia
.
[
35
]
D. Wang, W.H. Zhang, J.S. Jiang. (2002).
“
Truss shape optimization with multiple displacement
constraints
”.
Comput. Methods Appl. Mech. Engrg.
191, pp.
3597
–
3612
.
[
36
]
H. Rahami, A. Kaveh, Y. Gholipour
. (2008).
“
Sizing, geometry and topology optimization
of trusses via
force method and genetic algorithm
”.
Engineering Structures