[1] Iijima, S. (1991). "Helical microtubules of graphitic carbon". Nature 354, 56-58.
[2] Han, Q., and Lu, G. (2003). "Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium". European Journal of Mechanics-A/Solids 22, 875-883.
[3] Wang, X., Yang, H., and Dong, K. (2005). "Torsional buckling of multi-walled carbon nanotubes". Materials Science and Engineering: A 404, 314-322.
[4] Chang, T., Li, G., and Guo, X. (2005). "Elastic axial buckling of carbon nanotubes via a molecular mechanics model". Carbon 43, 287-294.
[5] Cao, G., and Chen, X. (2007). "The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes". International Journal of Solids and Structures 44, 5447-5465.
[6] Wang, X., Lu, G., and Lu, Y. (2007). "Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading". International journal of solids and structures 44, 336-351.
[7] Xiaohu, Y., and Qiang, H. (2007). "Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field". Composites science and technology 67, 125-134.
[8] Sun, C., and Liu, K. (2008). "Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures". International journal of solids and structures 45, 2128-2139.
[9] Yao, X., Han, Q., and Xin, H. (2008). "Bending buckling behaviors of single-and multi-walled carbon nanotubes". Computational Materials Science 43, 579-590.
[10] Ghorbanpour Arani, A., Rahmani, R., and Arefmanesh, A. (2008). "Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software". Physica E: Low-dimensional Systems and Nanostructures 40, 2390-2395.
[11] Kang, Z., Li, M., and Tang, Q. (2010). "Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis". Computational Materials Science 50, 253-259.
[12] Ansari, R., and Rouhi, S. (2010). "Atomisticfinite element model for axial buckling of single-walled carbon nanotubes". Physica E: Low-dimensional Systems and Nanostructures 43, 58-69.
[13] Saavedra Flores, E., Adhikari, S., Friswell, M., and Scarpa, F. (2011). "Hyperelastic axial buckling of single wall carbon nanotubes". Physica E: Low-dimensional Systems and Nanostructures 44, 525-529.
[14] Ansari, R., Sahmani, S., and Rouhi, H. (2011). "Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique". Computational Materials Science 50, 3050-3055.
[15] Ghavamian, A., and Öchsner, A. (2012). "Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes". Physica E: Low-dimensional Systemsand Nanostructures 46, 241-249.
[16] Şimşek, M., and Yurtcu, H. (2013). "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory". Composite Structures 97, 378-386.
[17] Tserpes, K., and Papanikos, P. (2005). "Finite element modeling of single-walled carbon nanotubes". Composites Part B: Engineering 36, 468-477.
[18] Lu, X., and Hu, Z. (2012). "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling". Composites Part B: Engineering 43, 1902-1913.
[19] Wernik, J., and Meguid, S. (2011). "Multiscale modeling of the nonlinear response of nano-reinforced polymers". Acta Mechanica 217, 1-16.
[20] Li, C., and Chou, T.W. (2003). "A structural mechanics approach for the analysis of carbonnanotubes".
International Journal of Solids and Structures 40, 2487-2499.
[21] Ansys Software Help, 2012.
[22] Chen, L., Zhao, Q., and Zhang, H. (2010). Axial buckling behavior of single-walled carbon nanotubes with finite element modeling. In Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference, pp. 276-279.
[23] Shima, H. (2012). "Buckling of carbon nanotubes: a state of the art review". Material 5, 47-84.