[1] کاغذچی، ط.، تخت روانچی، م.، حیدری، ع.ا.، کارگری، ع. (1388) "کاربرد غشاء مایع در فرایندهای جداسازی"؛ نشریه علوم و مهندسی جداسازی، شماره اول، ، صفحات 81 تا 89.
[2] Tabe Mohammadi, A. (1999). “A review of the application of membrane separation technology in natural gas treatment”, Separation Science and Technology, Vol. 34, pp. 2095-2111.
[3] Shahsavand, A., Pourafshari Chenar, M. (2007). “Neural networks modeling of hollow fiber membrane processes”, Journal of Membrane Science, Vol. 297, Issues 1–2, pp. 59-73.
[4] Curcio, S., Calabrò, V., Iorio, G. (2006). “Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks”, Journal of Membrane Science, Vol. 286, Issues 1–2, pp. 125-132.
[5] Tan, M., He, G., Nie, F., Zhang, L., Hu, L. (2014). “Optimization of ultrafiltration membrane fabrication using backpropagation neural network and genetic algorithm”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, Issue 1, pp. 68-75.
[6] Rostamizadeh, M., Hashemi Rizi, M. (2012). “Predicting gas flux in silicalitezeolite membrane using artificial neural networks”, Journal of Membrane Science, Vol. 403–404, Pp. 146-151.
[7] Chakraborty, M., Bhattacharya, C., Dutta, S. (2003). “Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes”, Journal of Membrane Science, Vol. 220, Issues 1–2, pp. 155-164.
[8] Shokrian, M., Sadrzadeh, M., Mohammadi, T. (2010). “C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: Experimental and neural network modeling”, Journal of Membrane Science, Vol. 346, Issue 1, Pp. 59-70.
[9] Guadix, A., Zapata, J., Almecija, M., Guadix, E. (2010). “Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks, Desalination, Vol. 250, Issue 3, pp. 1118-1120.
[10] Niemi, H., Bulsari, A., Palosaari, S. (1995). “Simulation of membrane separation by neural networks”, Journal of Membrane Science, Vol. 102, pp. 185-191.
[11] Curcio, S., Scilingo, G., Calabrò, V., Iorio, G. (2005). “Ultrafiltration of BSA in pulsating conditions: an artificial neural networks approach”, Journal of Membrane Science, Vol. 246, Issue 2, pp. 235-247.
[12] Mohammadi, T., Rezakazemi, M. (2013). “Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling”, International Journal of Hydrogen Energy, Vol. 38, Issue 32, pp. 14035-14041.
[13] Aydiner, C., Demir, I., Yildiz, E. (2005). “Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal“, Journal of Membrane Science, Vol. 248, Issues 1–2, pp. 53-62.
[14] Jindaratsamee, P., Ito, A., Shimoyama, Y. (2011). ” Amine/glycol liquid membranes for CO2 recovery form air”, Journal of Membrane Science, Vol. 385–386, pp. 171–176.
[15] U.S. Patent, 5,041,225 (1991).
[16] Li, J., Ito, A. (2008). “Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol”, Journal of Membrane Science, Vol. 325, pp. 1007–1012.
[17] Moradi, M., Zulkernine, M., (2004). “A neural network based system for intrusion detection and classification of attacks”, Proceeding of the 2004 IEEE International Conference on Advances in Intelligent Systems–Theory and Applications, Luxembourg- Kirchberg, Luxembourg, IEEE Press, 2004, November, 15–18.
[18] Rufford T.E., Smart, S., Watson, G. Y., Graham, F., Boxall, J., Diniz J. May, E. (2012) “The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies”, Journal of Petroleum Science and Engineering, Vol. 94-95, pp. 123–154.