1-
[1] G. O. History. (2014). Google Annual Search Statistics. Available: http://www.statisticbrain.com/google-searches/
[2] Krovetz, R. (1997, July). Homonymy and polysemy in information retrieval. InProceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics (pp. 72-79). Association for Computational Linguistics.
[3] Spink, A., & Jansen, B. J. (2004). A study of web search trends. Webology,1(2), 4.
[4] Sanderson, M. (2008, July). Ambiguous queries: test collections need more sense. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 499-506). ACM.
[5] Xu, J., & Croft, W. B. (1996, August). Query expansion using local and global document analysis. In Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 4-11). ACM.
[6] Huang, J. X., Miao, J., & He, B. (2013). High performance query expansion using adaptive co-training. Information Processing & Management, 49(2), 441-453.
[7] Lee, K. S., & Croft, W. B. (2013). A deterministic resampling method using overlapping document clusters for pseudo-relevance feedback. Information Processing & Management, 49(4), 792-806.
[8] Bashir, S. (2012). Improving retrievability with improved cluster-based pseudo-relevance feedback selection. Expert Systems with Applications, 39(8), 7495-7502.
[9] Lavrenko, V., & Croft, W. B. (2001, September). Relevance based language models. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 120-127). ACM.
[10] Lee, K. S., Park, Y. C., & Choi, K. S. (2001). Re-ranking model based on document clusters. Information processing & management, 37(1), 1-14.
[11] Lee, K. S., Kageura, K., & Choi, K. S. (2004). Implicit ambiguity resolution using incremental clustering in cross-language information retrieval. Information processing & management, 40(1), 145-159.
[12] Tombros, A., & van Rijsbergen, C. J. (2001, October). Query-sensitive similarity measures for the calculation of interdocument relationships. InProceedings of the tenth international conference on Information and knowledge management (pp. 17-24). ACM.
[13] Rocchio, J. J. (1971). Relevance feedback in information retrieval.
[14] Sakai, T., Manabe, T., & Koyama, M. (2005). Flexible pseudo-relevance feedback via selective sampling. ACM Transactions on Asian Language Information Processing (TALIP), 4(2), 111-135.
[15] Jardine, N., & van Rijsbergen, C. J. (1971). The use of hierarchic clustering in information retrieval. Information storage and retrieval, 7(5), 217-240.
[16] Na, S. H. (2013). Probabilistic co-relevance for query-sensitive similarity measurement in information retrieval. Information Processing & Management,49(2), 558-575.
[17] U. o. Glascow. (2014/03). Medline collection. Available: http://ir.dcs.gla.ac.uk/resources/test_collections/medl/
[18] Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005, May). Indri: A language model-based search engine for complex queries. In Proceedings of the International Conference on Intelligent Analysis (Vol. 2, No. 6, pp. 2-6).