[1] Choi, U.S. (1995). “Enhancing thermal conductivity of fluids with nanoparticles”. ASME Fluids Eng, Div. 231, pp. 99–105.
[2] Xie, H.Q., Wang, J.C., Xi, T.G., Li, Y., Ai, F. (2002). “Dependence of the thermal conductivity of nanoparticle–fluid mixture on the base fluid”. J. Mater. Sci, Lett. 21, pp. 1469–147.
[3] Khanafer, K., Vafai, K., Lightstone, M. (2003). “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids”. Int. J. Heat Mass Transfer, Vol. 46, pp. 3639–3653.
[4] Jou, R.Y., Tzeng, S.C. (2006). “Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures”. Int. Commun. Heat Mass Transfer, Vol. 33, pp. 727–736.
[5] Polidori, G., Fohanno, S., Nguyen, C.T. (2007). “A note on heat transfer modeling of Newtonian nanofluids in laminar free convection”. Int. J. Therm. Sci, Vol. 46, pp. 739–744.
[6] Valencia, A., Frederick, R.L. (1998). “Heat transfer in square cavities with partially active vertical walls”. Int. J. Heat Mass Transfer, Vol. 32, pp. 1567–1574.
[7] Deng, Q.H., Tang, G.F., Li, Y. (2002). “A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources”. Int. J. Heat Mass Transfer, Vol. 45, pp. 3437–3446.
[8] Nithyadevi, N., Kandaswamy, P., Lee, J. (2007). “Natural convection in a rectangular cavity with partially active side walls”. Int. J. Heat Mass Transfer, Vol. 50, pp. 4688–4697.
[9] Oztop, H.F., Abu-Nada, E. (2008). “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids”. Int. J. Heat Fluid Flow, Vol. 29, pp. 1326–1336.
[10] Sheikhzadeh, G.A., Arefmanesh, A., Kheirkhah, M.H., Abdollahi, R. (2011). “Natural convection of Cu–water nanofluid in a cavity with partially active side walls”. European Journal of Mechanics B/Fluids, Vol. 30, pp. 166–176.
[11] Corcione, M. (2011). “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids”. Energy Conversion and Management, Vol. 52, pp. 789–793.
[12] Bijan, A. (1984). “Convection heat transfer”, third edition, Wily, NewYork.
[13] Alloui, Z., Vasseur, P., Reggio, M. (2010). “Natural convection of nanofluids in a shallow cavity heated from below". International Journal of Thermal Sciences, Vol. 50, pp. 1-9.
[14] Barakos, G., Mitsoulis, E. (1994). “Natural convection flow in a square cavity revisited, laminar and turbulent models with wall functions”. Internat. J. Numer. Methods Fluids, Vol. 18, pp. 695–719.
[15] Markatos, N.C., Pericleous, K.A. (1984). “Laminar and turbulent natural convection in an enclosed cavity”. Int. J. Heat Mass Transfer, Vol. 27, pp. 772–775.
[16] De Vahl Davis, G. (1983). “Natural convection of air in a square cavity, a benchmark numerical solution”. Internat. J. Numer. Methods Fluids, Vol.3, pp. 249–264.
[17] Fusegi, T., Hyun, J.M., Kuwahara, K., Farouk, B. (1991). “A numerical study of three dimensional natural convection in a differentially heated cubical enclosure”. Int. J. Heat Mass Transfer, Vol. 34, pp. 1543–1557.
[18] Aminossadati, S.M., Ghasemi, B. (2011). “Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source–sink”. International Communications in Heat and Mass Transfer, Vol. 38, pp. 672–678.
[19] Abu-Nada, E., Chamkha, A.J. (2010). “Effect of nano fluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid”, International Journal of Thermal Sciences, Vol. 49, pp. 2339-2352.