Robustness of Magnetic Levitation by Using Feedback Linearization Back-Stepping and Nonlinear Disturbance Observer

Document Type : Research Paper

Authors

Abstract

In this paper, the position tracking problem of a magnetic levitation system with the external disturbance and uncertainties is investigated. The dynamic of a magnetic levitation is governed by a SISO third-order nonlinear differential equation and only the position measurement is available for control. In this paper, the combination of the feedback linearization and Back-stepping techniques is used as a new control method for this system. Feedback linearization and back-stepping techniques are introduced as methods for linearization of a system with coordinate transformation and nonlinear designing, respectively. In other hand, nonlinear disturbance observer has a good ability to estimate disturbances and nonlinear dynamics, so it is combined with designed controller to increase performance of the controller, reducing the effects of disturbances and system uncertainties by estimating them. Simulation results show that the proposed method has a good ability in the position tracking and a good performance in elimination of the external disturbance and uncertainties.

Keywords


 
[1] Cho. D., Kato. Y., and Spilman. D., “Sliding mode and classical control for magnetic levitation systems,” IEEE Control Systems, vol. 13, no. 1, pp. 43–48, 1993.
[2] Yeh T.J., Chung. Y .J., Youcef-Toumi. K., “Sliding mode control of magnetic bearing systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 123, no. 3, pp. 353–362, 2001.
[3] Yang, J., Li, S., and Yu, X., “Sliding-Mode Control for Systems With Mismatched Uncertainties via a Disturbance Observer,” IEEE Transaction on Industrial Electronics, vol. 60, no. 1, pp. 160-169, Jan 2013.
[4] Annaswamy. A. M., Thanomsat. C., Mehta. N., Loh. A.P., “Applications of adaptive controllers to systems with nonlinear parameterization,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 120, no. 2, pp. 477–487, 1998.
[5] Yang Z.J., Tateishi. M., “Adaptive robust nonlinear control of a magnetic levitation system,” Automatica, vol. 37, no. 7, pp. 1125–1131, 2001.
[6] Hajimani, M., Dashti, Z. A. S., Gholami, M., Jafari, M., Shoorehdeli, M. A., “Neural Adaptive Controller for Magnetic levitation System,” IEEE Iranian Conference on Intelligent System (ICIS), pp. 1-6, 2014.
[7] Yang. Z. J., Kunitoshi. K., Kanae. S. and Wada. K., “Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach,” IEEE Transaction on Industrial Electronics, vol. 55, no. 1, pp. 390-399, Jan 2008.
[8] Yang. Z. J., Fukushima. Y., Kanae. S., and Wada. K., “Robust non-linear output-feedback control of a magnetic levitation system by k-filter approach,” IET Control Theory and Application, vol. 3, no. 7, pp. 852-864, Jul 2009.
[9] Yang. Z. J., “Robust output-feedback control of a magnetic levitation system,” International Conference on Modeling, Identification and Control (ICMIC), pp. 219-224, Okayama, Japan, Jul 2010.
[10] Lin, F. J., Chen, S. Y., & Shyu, K. K., “Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.,” IEEE Transactions on Neural Networks, vol. 20, no. 6, pp. 938-951, 2009.
[11] Shieh, H. J., Siao, J. H., & Liu, Y. C., “A robust optimal slidingā€mode control approach for magnetic levitation systems,” Asian Journal of Control, vol. 12, no.4, pp. 480-487, 2010.
[12] Moghaddam, E. T., & Ganji, J., “Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter,” Energy Science and Technology, vol. 2, no. 2, pp. 35-42, 2011.
[13] Yang, Z. J., Hara, S., Kanae, S., & Wada, K., “Robust output feedback control of a class of nonlinear systems using a disturbance observer,” IEEE Transactions on Control Systems Technology, vol. 19, no.2, pp. 256-268, 2011.
[14] Yang, Z. J., and Minashima, M., “Robust nonlinear control of a feedback linearizable voltage-controlled magnetic levitation system,” Transactions -Institute of Electrical Engineers of Japan, vol. 121, no. 7, pp. 1203-1211, 2001.
[15] Yang, Z. J., Miyazaki, K., Kanae, S. and Wada, K., “Robust Position Control of a Magnetic Levitation System via Dynamic Surface Control Technique,” IEEE Transaction on Industrial Electronics, vol. 51, no. 1, pp. 26-34, 2004.
[16] Mahmoud, N. I., “A backstepping design of a control system for a magnetic levitation system,” Doctoral dissertation Linköping, 2003.
[17] Meena. N., Sharma, B.B., “Backstepping Algorithm with Sliding Mode Control for Magnetic Levitation System,” International Journal of Emerging Trends in Electrical and Electronics, vol. 10, no. 3, 2014.
[18] Yang. Z. J., Tsubakihara. H., Kanae. S., Wada. K., Chun-Yi Su, “Robust Nonlinear Control of a Voltage-Controlled Magnetic Levitation System with Disturbance Observer,” IEEE International Conference on Control Application, pp. 747-752, Oct 2007.
[19] Li. W., and Lin P. W. Q., “The Feedback Linearization Based on Backstepping Technique,” International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 2, pp. 282-286, Shanghai, china, Nov 2009.
[20] Chen. W. H., Balance. D. J. and Gawthrop. P. J., “A nonlinear disturbance observer for robotic manipulators,” IEEE Transaction on Industrial Electronics, vol. 47, no. 4, pp. 932-938, 2000.
[21] Chen. W. H., “Disturbance Observer Based Control for Nonlinear Systems,” IEEE/ASME Transaction on Mechatronics, vol. 9, no. 4, pp. 706-710, Dec 2004.