5-
[1] Yang, S., Li C. (2010). “A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments”. IEEE Transactions on Evolutionary Computation, vol. 14, no. 6, pp. 959-974.
[2] Yang . S, (2007)., "Explicit memory schemes for evolutionary algorithms in dynamic environments". In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic and Uncertain Environments, volume 51 of Studies in Computational Intelligence, pages 3-28. Springer-Verlag.
[3] Kamos,i M., Hashemi, A.B., Meybodi, M.R., (2010). “A New Particle Swarm Optimization Algorithm for Dynamic Environments”. SEMCCO. pp. 129-138.
[4] Blackwell, T., Branke, J. (2006). “Multi-Swarms, Exclusion, and Anti-Convergence in Dynamic Environments”. IEEE Transactions on Evolutionary Computation 10, 459–472.
[5] Blackwell, T. and Branke, J. (2004). “Multi-swarm optimization in dynamic environments”. In: G.R. Raidl, editor, Applications of Evolutionary Computing, volume 3005 of Lecture Notes in Computer Science, pp.489–500. Springer, Berlin, Germany.
[6] Blackwell, T. and Branke, J and Li, X. (2008). “Particle swarms for dynamic optimization problems”. Swarm Intelligence. Springer Berlin Heidelberg,. 193-217.
[7] Du, W., Li, B. (2008). "Multi-Strategy Ensemble Particle Swarm Optimization for Dynamic Optimization",.Information Sciences: an International Journal Vol.178, pp.3096–3109.
[8] Li, C. and Yang, S. (2009). “A clustering particle swarm optimizer for dynamic optimization,” in Proc. Congr. Evol. Comput, pp. 439–446.
[9] Li, C. and Yang, S. (2008)., “Fast Multi-Swarm Optimization for Dynamic Optimization Problems”. Proc, Int’l Conf. Natural Computation, vol. 7, no. 3, pp. 624-628.
[10] Karaboga, D. Basturk, B. (2009). “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”. Journal of Global Optimization, 39, 459–471.
[11] Krasnogor, N. and Smith, j. (2005). “A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues”. IEEE Trans. Evolutionary Computation, vol. 9, no. 5, pp. 474-488.
[12] Yang, S. (2007). “Explicit memory schemes for evolutionary algorithms in dynamic environment”. s. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic and Uncertain Environments, volume 51 of Studies in Computational Intelligence, pages 3-28. Springer-Verlag.
[13] Ryan, C. (1997). “Dyploidy without dominance”. In J. T. Alander, editor, Proceedings of the Nordic Workshop on Genetic Algorithms, pages 6370.
[14] Yang, S. (2007). “Genetic algorithms with elitism-based immigrants for changing optimization problems”. In Applications of Evolutionary Computing, Lecture Notes in Computer Science 4448, pages 627–636.
[15] Ramsey, C. Grefenstette, J. (1993). “Case-based initialization of genetic algorithms”. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 84-91. Morgan Kaufmann.
[16] Trojanowski, K. and Michalewicz, Z. (1999). “Searching for optima in non-stationary environments”. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), pages 1843-1850. IEEE Press.
[17] Wang, H. Yang, S. (2012). Ip D.WH., “A memetic particle swarm optimisation algorithm for dynamic multi-modal optimization problems”. Int J Syst Sci 43(7):1268–1283.
[18] Branke, J. (1999). “Memory enhanced evolutionary algorithms for changing optimization problems”. In Congress on Evolutionary Computation, pages 1875–1882.
[19] Morrison, R and DeJong, K. (1999). “A test problem generator for non-stationary environments”. In Congress on Evolutionary Computation, pages 2047–2053.
[21] Parrott, D and Li, X. (2006). “Locating and Tracking MultipleDynamic Optima by A Particle Swarm Model Using peciation”. in IEEE Transaction on Evolutionary Computation, vol. 10, No. 4, pp. 440-458.
[22] Hashemi, A. B. and Meybodi, M. R. (2009). “Cellular PSO: A PSO for Dynamic Environments”. Advances in Computation and Intelligence, pp. 422-433.
[23] Lung, R. I and Dumitrescu, D. (2010). “Evolutionary swarm cooperative optimization in dynamic environments,” Natural Comput., vol. 9, no. 1, pp. 83–94.
[24] Bird, S and Li, X. (2007). “Using regression to improve local convergence,” in Proc. Congr. Evol. Comput., pp. 592–599.
[25] Lung, R. I and Dumitrescu, D. (2007). “A collaborative model for tracking optima in dynamic environments,” in Proc. Congr. Evol. Comput, pp. 564–567.
[26] Li, C. and Yang, S. (2012). A general framework of multipopulation methods with clustering in undetectable dynamic environments, Evolutionary Computation, IEEE Transactions on16(4): 556–577.
[27] Nasiri, B. and Meybodi, M. (2012). "Speciation based firefly algorithm for optimization in dynamic environments", International Journal of Artificial Intelligence 8(S12): 118–132.
[28] Noroozi, V., Hashemi, A. and Meybodi, M. (2011). Cellularde: a cellular based differential evolution for dynamic optimization problems, Adaptive and Natural Computing Algorithms pp. 340–349.