[1] Sangsawang, C., Sethanan, K., Fujimoto, T., Gen, M.c. (2015). “Metaheuristic Optimization Approaches For Two-Stage Reentrant Flexible Flow Shop With Blocking Constraint”. Expert Systems with Applications, Vol 42(15): pp. 2395-2410.
[2] Linn, R., Zhang, W. (1999). “Hybrid Flow Shop Scheduling: A Survey”. Comput. Ind. Eng., Vol 37: pp. 57–61.
[3] Gupta, J., Hariri, A., Potts, P. (1997). “Scheduling A Two-Stage Hybrid Flow Shop With Parallel Machines at The First Stage”. Ann. Oper. Res., Vol 69: pp. 171–191.
[4] Haouari, M., Hidri, L., Gharbi, A. (2006). “Optimal Scheduling of a Two-Stage Hybrid Flow Shop”. Math. Methods Oper. Res., Vol 64: pp. 107–124.
[5] Hall, N.G., Sriskandarajah, C. (1996). “A Survey of Machine Scheduling Problems With Blocking and No-Wait In Process”. Oper. Res., Vol 44: pp. 510–525.
[6] Ruiz, R., S erifo˘ glu, F.S., Urlings, V. (2008). “Modeling Realistic Hybrid Flexible Flow shop Scheduling Problems”. Comput. Oper. Res., Vol 35: pp. 1151-1175.
[7] Allaoui, H., Artiba, A. (2006). “Scheduling Two-Stage Hybrid Flow Shop with Availability Constraints”. Comput. Oper. Res., Vol 33: pp. 1399–1419.
[8] Carpov, S., Carlier, J., Nace, D., Sirdey, R. (2012). “Two-Stage Hybrid Flow Shop With Precedence Constraints and Parallel Machines at Second Stage”. Comput. Oper. Res., Vol 39: pp. 736–745.
[9] Nikzad, F., Rezaeian, J., Mahdavi, I., Rastgar, I. (2015). “Scheduling of Multi-Component Products in a Two-Stage Flexible Flow Shop”. Applied Soft Computing, Vol 32: pp. 132–143.
[10] Lin, H.-T., Liao, C.J. (2003). “A Case Study in a Two-Stage Hybrid Flow Shop With Setup Time and Dedicated Machines”. Int. J. Prod. Econ., Vol 86: pp. 133–143.
[11] Cheng, T.E., Lin, B.M., Tian, Y. (2009). “Scheduling of a Two-Stage Differentiation Flow Shop To Minimize Weighted Sum of Machine Completion Times’. Comput. Oper. Res., Vol 36: pp. 3031–3040.
[12] Brah, S.A., Hunsucker, J.L. (1991). “Branch and Bound Algorithm For The Flow Shop With Multiple Processors”. Eur. J. Oper. Res., Vol 51: pp. 88–99.
[13] Riane, F., Artiba, A., Elmaghraby, S.E. (2002). “Sequencing a Hybrid Two-Stage Flow Shop with Dedicated Machines”. Int. J. Prod. Res., Vol 40: p. 4353–4380.
[14] Li, Z., Liu, J., Chen, Q., Mao, N., Wang, X. (2015). “Approximation Algorithms for the Three-Stage Flexible Flow Shop Problem with Mid Group Constraint”. Expert Systems with Applications, Vol 42(7): pp. 3571-3584.
[15] Jolai, F., Asefi, H., Rabiee, M., Ramezani, P. (2013). “Bi-Objective Simulated Annealing Approaches For No-Wait Two-Stage Flexible Flow Shop Scheduling Problem”. Scientia Iranica E, Vol 20(3): pp. 861–872.
[16] Gerstl, E., Mosheiov, G. (2014). “A Two-Stage Flexible Flow Shop Problem with Unit-Execution-Time Jobs and Batching”. Int. J. Production Economics, Vol 158: pp. 171–178.
[17] Wei, Q., E. Shan, Kang, L. (2014). “A FPTAS for a Two-Stage Hybrid Flow Shop Problem and Optimal Algorithms for Identical Jobs”. Theoretical Computer Science, Vol 524: pp. 78–89.
[18] Johnson, S.M. (1954). “Optimal Two and Three Stage Production Schedules With Setup Times Included”. Naval Res. Log., Quart. 1: pp. 61–68.
[19] Lee, C.-Y., Cheng, T., Lin, B.M. (1993). “Minimizing the Makespan in the 3-Machine Assembly Type Flow Shop Scheduling Problem”. Manage. Sci., 39: pp. 616–625.
[20] Hariri, A., Potts, C. (1997). “A branch and bound algorithm for the two-stage assembly
scheduling problem”. Problem, Eur. J. Oper. Res., 103: pp. 547–556.
[21] Fattahi, P., Hosseini, S.M.H., Jolai, F., Tavakkoli-Moghaddam, R., (2014). “A Branch and Bound Algorithm For Hybrid Flow Shop Scheduling Problem With Setup Time and Assembly Operations”. Appl. Math. Model., Vol 38: pp. 119-134.
[22] Yokoyama, M., (2004). “Scheduling For Two-Stage Production System With Setup and Assembly Operations”. Comput. Oper. Res., Vol 31: pp. 2063–2078.
[23] Yokoyama, M., Santos, D.L. (2005). “Three-Stage Flow-Shop Scheduling With Assembly Operations To Minimize The Weighted Sum of Product Completion Times”. Eur. J. Oper. Res., Vol 161: pp. 754–770.
[24] Yokoyama, M. (2008). “Flow Shop Scheduling with Setup and Assembly Operations”. Eur. J. Oper. Res., Vol 187: pp. 1184–1195.
[25] Yan, H.-S., Wan, X.-Q., Xiong, F.-L. (2014). “A Hybrid Electromagnetism-Like Algorithm For Two-Stage Assembly Flow Shop Scheduling Problem”. Int. J. Prod. Res., Vol 52(14): pp. 1–14.
[26] Xiong, F., Xing, K., Wang, F. (2015). “Scheduling A Hybrid Assembly-Differentiation Flows Shop To Minimize Total Flow Time” . Eur. J. Oper. Res., Vol 240: pp. 338–354.
[27] Shoaardebili, N., Fattahi, P. (2014). “Multi-Objective Meta-Heuristics To Solve Three-Stage Assembly Flow Shop Scheduling Problem With Machine Availability Constraints”. Int. J. Prod. Res., Vol 53(3): pp. 1-25.
[28] Besbes, W., Loukil, T., Teghem, J. (2010). “A Two-Stage Flow Shop with Parallel Dedicated Machines”, in Proceedings of the Conference Mosim.
[29] Wang, S., Liu, M. (2013). “A Heuristic Method For Two-Stage Hybrid Flow Shop with Dedicated Machines”. Comput. Oper. Res., Vol 40: pp. 438–450.
[30] Hadda, H., Dridi, N., Hajri-Gabouj, S. (2014). “Exact Resolution of The Two-Stage Hybrid Flow Shop With Dedicated Machines”. Optim. Lett., Vol 8(8): pp. 1–11.
[31] Abbas, M., Bekrar, A., Benmansour, R., Hanafi, S. (2014). “On The Complexity of Robotic Flow Shop With Transportation Constraints”, in ROADEF-15ème congrès annuel de la Société franc¸ aise de recherche opérationnelle et d’aide à la décision.
[32] Bertsimas, D., Sim, M. (2002). “The Price of Robustness”. Oper. Res., Vol 52(1): pp. 35 - 53.
]33[ بهشتینیا، م. قاضی وکیلی، ن. (1394). "ارزیابی الگوریتمهای زمانبندی تولید کارگاهی انعطافپذیر و مقایسه آنها با الگوریتم ژنتیک دو بخشی". مجله مدلسازی در مهندسی، 40، 16-1.
[34] Altiparmak, F., Gen, M., Lin, L., Karaoglan, I. (2008). “A Steady-State Genetic Algorithm for Multi-Product Supply Chain Network Design”. Computers & Industrial Engineering, Vol 56: 521-537.
[35] Hasani, A., Zegordi, S.H., Nikbakhsh, E. (2015). “Robust Closed-Loop Global Supply Chain Network Design under Uncertainty: The Case of the Medical Device Industry”. International Journal of Production Research, Vol 53(5): pp. 1596-1624.
[36] Fahimnia, B., Farahani, R.Z., Sarkis, J., (2013) “Integrated Aggregate Supply Chain Planning Using Memetic Algorithm – A Performance Analysis Case Study”. International Journal of Production Research, Vol 15(18): pp. 5354-5373.
[37] Moscato, P., Norman, M.G., (1992). “A Memetic Approach for The Traveling Salesman Problem Implementation of A Computational Ecology For Combinatorial Optimization On Message-Passing Systems”. Parallel Computing and Transporter Applications, pp. 177–186.
[38] Fonseca, C.M., Fleming, P.J. (1993). “Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization”, in the Fifth International Conference on Genetic Algorithms, M. Kaufmann, Editor. SanMateo, California.
[39] Horn, J., Nafpliotis, N., Goldberg, D.E. (1994). “A Niched Pareto Genetic Algorithm for Multi-objective Optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation”, IEEE World Congress on Computational Computation, N. Piscataway, Editor. IEEE Press.
[40] Srinivas, N., Deb, K. (1994). “Multi-objective Optimization Using Non-dominated Sorting in Genetic Algorithms”. Evolutionary Computation, Vol 2(3): pp. 221–248.
[41] Zitzler, E., Thiele, L. (1999). “Multi-objective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach”. IEEE Transactions on Evolutionary Computation, Vol 3(4): pp. 257–271.
[42] Knowles, J.D., Corne, D.W. (1999). “The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multi-objective Optimization”, in Congress on Evolutionary Computation (CEC99), N. Piscataway, Editor. IEEE Press. pp. 98–105.
[43] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Parallel Problem Solving from Nature”. Springer: Berlin. pp. 849–858.
[44] Corne, D.W., Knowles, J.D., Oates, M.J. (2000). “The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimization”, in Parallel Problem Solving from Nature. Springer: Berlin. pp. 839–848.
[45] Zitzler, E., Laumanns, M., Thiele, L. (2001). “SPEA2: Improving the Strength Pareto Evolutionary Algorithm”. Department of Electrical Engineering: Swiss Federal Institute of Technology (ETH) Zurich.
[46] Baños, R., Ortega, J., Gilb, C., Márquez, A.L., Toro, F.D. (2013). “A Hybrid Meta-Heuristic for Multi-Objective Vehicle Routing Problems with Time Windows”. Computers & Industrial Engineering, Vol 65: pp. 286–296.
[47] Ropke, S., Pisinger, D. (2006). “An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows”. TRANSPORTATION SCIENCE, Vol 40: pp. 455-472.
[48] Talbi, E.G. (2009). “Metaheuristics: From Design to Implementation”. Wiley.
[49] Eskandarpour, M., Nikbakhsh, E., Zegordi, S.H. (2014). “Variable Neighborhood Search for the Bi-Objective Post-Sales Network Design Problem: A Fitness Landscape Analysis Approach”. Computers & Operations Research, Vol 52: pp. 300–314.
[50] Hasani, A., Zegordi, S.H., Nikbakhsh, E. (2015). “Robust Closed-Loop Global Supply Chain Network Design under Uncertainty: The Case of the Medical Device Industry”. International Journal of Production Research, Vol 53(5): pp. 1596-1624.
[51] Altiparmak, F., Gen, M., Lin, L., Paksoy, T. (2006). “A Genetic Algorithm Approach For Multi-Objective Optimization of Supply Chain Networks”. Computers & Industrial Engineering, Vol 51: pp. 196-215.
[52] Eskandarpour, M., E. Nikbakhsh, Zegordi, S.H. (2014). “Variable Neighborhood Search for the Bi-Objective Post-Sales Network Design Problem: A Fitness Landscape Analysis Approach”. Computers & Operations Research, Vol 52(B): pp. 300–314.