A New Method of Modeling for Cuk Converter Based on Signal Flow Graph Approach and its Control by using a Mixed Sensitivity Type Robust Technique

Document Type : Research Paper

Authors

Abstract

In this paper, a new method based on signal flow graph is proposed for modeling a Cuk converter. Furthermore, the original signal flow graph based method suggested in literature is also implemented on the Cuk converter. The proposed method is very simple in the process, compared to other methods of modeling and the old method of signal flow graph. By using signal flow graph approach the three models of small signal, large signal and steady state are extracted. Also, without adding any additional computation, the desired transfer function between any two state variables of the circuit is extractable. After modeling the converter, a controller design problem for the Cuk converter will be discussed. A robust control method is proposed for controlling the system. It will be shown that, although the switching converter has a nonlinear nature, but this does not affect the controller design problem. By using a linear controller with parameters tuned with a robust method of mixed sensitivity type, controlling the converter is possible.

Keywords


 
 
 
[1] Kapat, S. (2009). ”Control methods for improving the performance of dc-dc converters”. Ph.D. Thesis, Kharagpur, India.
[2] Gatto, G., Marongiu, I., Mocci, A., Serpi, A. (2013). “An improved averaged model for boost dc-dc converters” in Proc. IEEE, IECON, pp. 412– 417, Vienna.
[3] Morales-Saldana, J.A., Carbajal Guierrez, E.E., Leyva-Ranos, J. (2002). “Modelling of switch mode dc-dc cascade converters”, IEEE Trans. Aerospace Electron. Sys., Vol. 38, No. 1, pp. 295-299.
[4] Priewasser, R. (2012). “Modeling, control and digital implementation of dc-dc converters under variable switching frequency operation”. PhD. Thesis, Klagenfurt University.
[5] Priewasser, R., Agostinelli, M., Unterrieder, Ch., Marsili, S., Huemer, M. (2014). “Modeling, Control, and Implementation of dc–dc Converters for Variable Frequency Operation”. IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 287–301.
[6] Wong, L.K., Man, T.K. (2010). “Small signal modeling of open loop SEPIC converters”. IET Power Electron., Vol. 3, No. 6, pp. 858-868.
[8] Mashinchi Mahery, H., and Babaei, E. (2013). “Mathematical modeling of buck–boost dc–dc converter and investigation of converter elements on transient and steady state responses”.Electrical Power and Energy Systems, Elsevier, Vol. 44, pp.949-963.
[9] Ki, W.H. (1998). “Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters”. IEEE Trans. Circuit Sys., Vol. 45, No. 6, pp. 644-655.
[10] Smedley, K., Cuk, S. (1994). “Switching flow graph nonlinear modeling technique”. IEEE Trans. Power Electron., Vol. 9, No. 4, pp. 405-413.
[11] Veerachary, M. (2004). “General rules for signal flow graph modeling and analysis of dc-dc converters”. IEEE Trans. Aerospace Electron. Sys., Vol. 40, No. 1, pp. 259–271.
[12] Veerachary, M. (2008). “Analysis of fourth-order dc-dc converters: A flow graph approach”. IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 133-141.
[13] Palomo, R.L., Saldan, J.A.M., Ramos, J.L. (2012). “Signal flow graphs for modeling of switching converters with reduced redundant power processing”. IET Power Electron., Vol. 5, No. 7, pp. 1008-1016.
[14] Veerachary, M., and Singamaneni, B.S. (2009). “Stability Analysis of Cascaded DC–DC Power Electronic System”. IEEJ Trans. Elec. Electron. Eng., Vol. 4, No. 6, pp. 763–770.
[15] Renaudineau, H., Martin, J., Mobarakeh, B.N., Pierfederici, S. (2014). “DC-DC converters dynamic modeling with state observer-based parameter estimation”. IEEE Trans. Power Electron., Vol. 99, No.1, pp.1-9.
[16] Mohammadian, L., Babaei, E., Sharifian, M.B.B. (2015). “Buck-boost dc-dc converter control by using the extracted model from signal flow graph method” International Journal of Applied Mathematics, Electronics and Computers, vol. 3. No. 3, pp. 155-160.
 
[17] Liao, L.Ch., Chien, K.W., Tseng, B.Ch. (2014). “Switching flow-graph modeling technique for DC-DC cuk converters” in Proc. IEEE, ECCE, pp. 1- 10, Lappeenranta.
[18] Abramovitz, A., Yao, J., Smedley, K. (2016). “Unified modeling of PWM converters with regular or tapped inductors using TIS-SFG approach” IEEE Trans. Power Electron.,Vol. 31, No.2, pp.1702- 1716.
[19] Selwan, E., Park, G., Gajic, Z. (2015). “ Optimal control of the Cuk converter used in solar cells via a jump parameter technique” IET Control Theory Appl., Vol. 9, No. 6, pp. 893–899.
[20] Long, B., Lim, Sh.T., Bai, Zh.F., Ryu, J.H., Chong, K.T. (2014). “Energy management and control of electric vehicles, using hybrid power source in regenerative braking operation”. Energies, Vol. 7, No. 7, pp. 4300-4315.
[21] Camara, M.B., Gualous, H., Gustin, F., Berthon, A., Dakyo, B. (2010). ”DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy”. IEEE Trans. Ind. Electron., Vol. 57, No. 2, pp. 587–597.