[1] Kapat, S. (2009). ”Control methods for improving the performance of dc-dc converters”. Ph.D. Thesis, Kharagpur, India.
[2] Gatto, G.,
Marongiu, I., Mocci, A., Serpi, A. (2013). “An improved averaged model for boost dc-dc converters” in Proc. IEEE, IECON, pp. 412– 417, Vienna.
[3] Morales-Saldana, J.A., Carbajal Guierrez, E.E., Leyva-Ranos, J. (2002). “Modelling of switch mode dc-dc cascade converters”, IEEE Trans. Aerospace Electron. Sys., Vol. 38, No. 1, pp. 295-299.
[4] Priewasser, R. (2012). “Modeling, control and digital implementation of dc-dc converters under variable switching frequency operation”. PhD. Thesis, Klagenfurt University.
[5] Priewasser, R., Agostinelli, M., Unterrieder, Ch., Marsili, S., Huemer, M. (2014). “Modeling, Control, and Implementation of dc–dc Converters for Variable Frequency Operation”. IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 287–301.
[6] Wong, L.K., Man, T.K. (2010). “Small signal modeling of open loop SEPIC converters”. IET Power Electron., Vol. 3, No. 6, pp. 858-868.
[8] Mashinchi Mahery, H., and Babaei, E. (2013). “Mathematical modeling of buck–boost dc–dc converter and investigation of converter elements on transient and steady state responses”.Electrical Power and Energy Systems, Elsevier, Vol. 44, pp.949-963.
[9] Ki, W.H. (1998). “Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters”. IEEE Trans. Circuit Sys., Vol. 45, No. 6, pp. 644-655.
[10] Smedley, K., Cuk, S. (1994). “Switching flow graph nonlinear modeling technique”. IEEE Trans. Power Electron., Vol. 9, No. 4, pp. 405-413.
[11] Veerachary, M. (2004). “General rules for signal flow graph modeling and analysis of dc-dc converters”. IEEE Trans. Aerospace Electron. Sys., Vol. 40, No. 1, pp. 259–271.
[12] Veerachary, M. (2008). “Analysis of fourth-order dc-dc converters: A flow graph approach”. IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 133-141.
[13] Palomo, R.L., Saldan, J.A.M., Ramos, J.L. (2012). “Signal flow graphs for modeling of switching converters with reduced redundant power processing”. IET Power Electron., Vol. 5, No. 7, pp. 1008-1016.
[14] Veerachary, M., and Singamaneni, B.S. (2009). “Stability Analysis of Cascaded DC–DC Power Electronic System”. IEEJ Trans. Elec. Electron. Eng., Vol. 4, No. 6, pp. 763–770.
[15] Renaudineau, H.,
Martin, J.,
Mobarakeh, B.N.,
Pierfederici, S. (2014). “DC-DC converters dynamic modeling with state observer-based parameter estimation”. IEEE Trans. Power Electron., Vol. 99, No.1, pp.1-9.
[16] Mohammadian, L., Babaei, E., Sharifian, M.B.B. (2015). “Buck-boost dc-dc converter control by using the extracted model from signal flow graph method” International Journal of Applied Mathematics, Electronics and Computers, vol. 3. No. 3, pp. 155-160.
[17] Liao, L.Ch., Chien, K.W., Tseng, B.Ch. (2014). “Switching flow-graph modeling technique for DC-DC cuk converters” in Proc. IEEE, ECCE, pp. 1- 10, Lappeenranta.
[19] Selwan, E., Park, G., Gajic, Z. (2015). “ Optimal control of the Cuk converter used in solar cells via a jump parameter technique” IET Control Theory Appl., Vol. 9, No. 6, pp. 893–899.
[20] Long, B., Lim, Sh.T., Bai, Zh.F., Ryu, J.H., Chong, K.T. (2014). “Energy management and control of electric vehicles, using hybrid power source in regenerative braking operation”. Energies, Vol. 7, No. 7, pp. 4300-4315.
[21] Camara, M.B., Gualous, H., Gustin, F., Berthon, A., Dakyo, B. (2010). ”DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy”. IEEE Trans. Ind. Electron., Vol. 57, No. 2, pp. 587–597.