The effect of the blowing and suction from one or two positions over the suction surface of NACA0012 airfoil on aerodynamic performance in turbulent flow

Document Type : Research Paper

Authors

Abstract

One approach to improve the aerodynamic performance of airfoils and hydrofoils is inject a small amount of energy to the system (such as fluid injection or suction on the surface), to change the lift and drag. In fact, surface suction and blowing of the fluid can improve the pressure distribution and velocity gradient on the airfoil/hydrofoil surfaces and modify the flow separation point. Therefore, in this study the hydrodynamic behavior of turbulent flows over an airfoil exposed to the injection and suction of fluid in a part of its upper surface is discussed. Firstly, the behavior of the airfoil under one position of the injection or suction and then under two positions of injection or suction are investigated. In this simulation, the FLUENT software is used. The aim of this study is to investigate the effect of the power, the number, the position and the angle of blowing or suction on the hydrodynamic performance of the airfoil. The most important results are the reduction of 10 to 50 percent of the drag and the increase of 5 to 10 percent of the lift (for the blowing) and the reduction of 5 to 30 percent of the drag and the increase of 5 to 10 percent of the lift (for the suction) by considering two positions of injection in comparison to one position.

Keywords


[1] Williams, J. "A Brief History of British Research on Boundary Layer Control for High Lift", Boundary Layer and Flow Control, G.V. Lachmann (Ed.), Volume 1, Pergamon Press, 1961.
[2] Head, M.R. "History of Research on Boundary Layer Control for Low Drag in U.K", Boundary Layer and Flow Control, G.V. Lachmann (Ed.), Volume 1, Pergamon Press, 1961.
[3] Huang, L., Huang, P.G. and LeBeau, R.P. "Numerical study of blowing and suction control mechanism on NACA0012 Airfoil", Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1005-1013.
[4] Weiberg, J.A. and Dannenberg, R. E. "Section Characteristics of an NACA 0006 Airfoil with Area Suction Near the Leading Edge", NASA TN 3285, Sept. 1954.
[5] Wu, J.Z., Andrew, D., Fan, M.M. and Wu, J.M. "Post stall Flow Control on an Airfoil by Local UnsteadyForcing", Journal of Fluid Mechanics, Vol. 371, 1998, pp. 21-58.
[6] Nae, C. "Synthetic Jets Influence on NACA 0012 Airfoil at High Angles of Attack", AIAA Paper 98-4523, 1998.
[7] Hassan, A. and Janakiram, R.D. "Effects of Zero-Mass Synthetic Jets on the Aerodynamics of the NACA0012 Airfoil", AIAA Paper 97-2326, 1997.
[8] Wang, C. and Sun, M. "Separation Control on a Thick Airfoil with Multiple Slots Blowing at Small Speed", Acta Mechanica, Vol. 143, 2000, pp.215-227.
[9] Ortmanns, J. and Kahler, C.J. “Investigation of Pulsed Actuators for Active Flow Control Using Phase Locked Stereoscopic Particle Image Velocimetry”, 12th International Symposium on Applications of Laser Techniques in Fluid Mechanics, Lisbon, Portugal 12 - 15 July 2004.
[10] You, D. and Moin, P. "Active Control of Flow Separation Over an Airfoil Using Synthetic Jets", Journal of Fluids and Structures, Vol. 24, 2008, pp. 1349-1357.
[11] Kim, S.H. and Kim, C. "Separation Control on NACA23012 Using Synthetic Jet", Aerospace Science and Technology, Vol. 3, 2009, pp. 172-182.
[12] Piperas, A.T. "Investigation of Boundary Layer Suction on a Wind Turbine Airfoil Using CFD", Master Thesis, Technical University of Denmark, Denmark, 2010.
[13] Luo, D.H., Sun, J., Huand, D.G., and Wu, G.Q. "Flow Control Effectiveness of Synthetic Jet on a Stalled Airfoil", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 225, September 2011,, pp.2106-2114.
[14] Yousefi, K., Saleh, S.R. and Zahedi, P. "Numerical Investigation of Suction and Length of Suction Jet on Aerodynamic Characteristics of the NACA 0012 Airfoil", International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, 2013, pp. 136-142.
[15] تحلیل پایداری هیدرودینامیکی برای جریان عبوری حول یک ایرفویل و پیشبینی نقطه « ، احمدی بلوطکی، م.، صداقت، ا. و م. ثقفیان
هشتمین کنفرانس سالانه بینالمللی انجمن هوافضای ایران، شاهین شهر، ایران، ،» گذار جریان 1387 .
[16] هفدهمین کنفرانس سالانه ،» کنترل جریان آرام بهکمک مکش بر روی ایرفویلها « ، احمدی بلوطکی، م.، صداقت، ا. و م. ثقفیان
بینالمللی مهندسی مکانیک، تهران، ایران، 1388 .
[17] احمدی بلوطکی، م.، صداقت، ا. و م. ثقفیان، ) 1391 تعیین نقطه آغاز گذار از جریان آرام به آشفته حول یک هوابر با استفاده از حل « )
فصلنامه دانش و فناوری هوا فضا، سال دوم، شماره دوم، ،» عددی معادله پایداری اور-سامرفلد و اعمال پروفیلهای سرعت عددی
زمستان 1391 ، صفحه 52 - 61 .
[18] Ahmadi-Baloutaki, M., Sedaghat, A., Saghafian, M., Badri, M.A. "Control of Transition over Aerofoil Surfaces using Active Suction", International Journal of Flow Control, Vol. 5, No. 3&4, 2013, pp. 187-200.
[19] Ahmadi-Baloutaki, M., Sedaghat, A., Saghafian, M., Badri, M.A. "A computational study on robust prediction of transition point over NACA0012 airfoil surfaces from laminar to turbulent flows", Theoretical and Applied Mechanics Letters, Vol. 3, No. 4, 2013, 042004-042004-3.
[20] Akbarzadeh, P., Mirzaee, I, Kayhani, M.H. and Akbarzadeh, E. "Blowing and Suction Effect on Drag and Lift Coefficients for Viscous Incompressible Flows over Hydrofoils by Power-Law Preconditioning Method", Modares Mechanical Engineering, Vol. 14, No. 4, 2014, pp. 129-140 (In Persian).
[21] Versteeg, H.K. and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd Edition, England, 2007.