[1] Guo, P., Li, J., Wang, Y., Liu, Y. (2013). ″Numerical analysis of the optimal turbine pressure drop ratio in a solar chimney power plant″. Solar Energy, Vol. 98, pp. 42-48.
[2] Guo, P., Li, J., Wang, Y., Wang, Y. (2016). ″Evaluation of the optimal turbine pressure drop ratio for a solar chimney power plant″. Energy Conversion and Management, Vol. 108, pp. 14-22.
[3] Guo, P., Wang, Y., Li, J., Wang, Y. (2016). ″Thermodynamic analysis of a solar chimney power plant system with soil heat storage″. Applied Thermal Engineering, Vol. 100, pp. 1076-1084.
[4] Patel, S.K., Prasad, D., Ahmed, M.R. (2014). ″Computational studies on the effect of geome- tric parameters on the performance of a solar chimney power plant″. Energy Conversion and Management, Vol. 77, pp. 424-431.
[5] Djimli, S., Chaker, A. (2014). ″Numerical Study of the Solar Chimney Power Plant Performance in the Region of M’Sila-Algeria″. Power (W), Vol. 1000, No. 12.
[6] Cottam, P.J., Duffour, P., Lindstrand, P., Fromme, P. (2016). ″Effect of canopy profile on solar thermal chimney performance″. Solar Energy, Vol. 129, pp. 286-296.
[7] Asnaghi, A., Ladjevardi, S.M. (2012). ″Solar chimney power plant performance in Iran″. Renewable and Sustainable Energy Reviews, Vol. 16, No. 5, pp. 3383-3390.
[8] Maia, C.B., Castro Silva, J.O., Cabezas-Gómez, L., Hanriot, S.M., Ferreira, A.G. (2013). ″Energy and exergy analysis of the airflow inside a solar chimney″. Renewable and Sustainable Energy Reviews, Vol. 27, pp. 350-361.
[9] Rashid, F. L., Hussein, E.Q., Azziz, H.N. (2015). ″Design of solar chimney with spherical collector for electricity production″. pp. 101-109.
[10] Nasirivatan, S., Kasaeian, A., Ghalamchi, M., Ghalamchi, M. (2015). ″Performance optimization of solar chimney power plant using electric/corona wind″. Journal of Electrostatics, Vol. 78, pp. 22-30.
[11] Kirstein, C.F., Backstrom, T.W.V. (2006). ″Flow through a solar chimney power plant collector-to-chimney transition section″. Journal Solar Energy Engineering, Vol. 128, No. 3, pp. 312-317.
[12] Koonsrisuk, A., Chitsomboon, T. (2007). ″Dynamic similarity in solar chimney modeling″. S- olar Energy, Vol. 81, No. 12, pp. 1439-1446.
[13] Fluri, T.P., VonBackstrom, T.W. (2008). ″Comparison of modelling approaches and layouts for solar chimney turbines″. Solar Energy, Vol. 82, No. 3, pp. 46-239.
[14] Fluri, T.P., VonBackstrom, T.W. (2008). ″Performance analysis of the power conversion unit of a solar chimney power plant″. Solar Energy, Vol. 82, No. 11, pp. 999-1008.
[15] Koonsrisuk, A., Chitsomboon, T. (2013). ″Effects of flow area changes on the potential of solar chimney power plants″. Energy, Vol. 51, pp. 400-406.
[16] Ming, T., Wang, X., Richter, R.K., Liu, W., Wu, T., Pan, Y. (2012). ″Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system″. Renewable and Sustainable Energy Reviews, Vol. 16, No. 8, pp. 5567-5583.
[17] Ming, T., Liu, W., Pan, Y., Xu, G. (2008). ″Numerical analysis of flow and heat transfer cha- racteristics in solar chimney power plants with energy storage layer″. Energy Conversion and Management, Vol. 49, No. 10, pp. 2872-2879.
[18] Ming, T., Liu, W., Xu, G., Xiong, Y., Guan, X., Pan, Y. (2008). ″Numerical simulation of the solar chimney power plant systems coupled with turbine″. Renewable Energy, Vol. 33, No. 5, pp. 897-905
[19] Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009). ″Analysis of chimney height for solar chimney power plant″. Applied Thermal Engineering, Vol. 29, No. 1, pp. 178-185.
[20] Li, J.Y., Guo, P.H., Wang, Y. (2012). ″Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines″. Renewable Energy, Vol. 47, pp. 21-28.
[21] Von Backström, T.W., Gannon, A.J. (2004). ″Solar chimney turbine characteristics″. Solar Energy, Vol. 76, No. 1, pp. 235-241.
[22] Thakre, S.B., Bhuyar, L.B., S. Dahake, V., Wankhade, P. (2013). ″Mathematical modeling of temperature lapse rate in solar chimney power plant″. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, Vol. 13, No. 1, pp. 1417-1423.
[23] Petela, R. (2009). ″Thermodynamic study of a simplified model of the solar chimney power plant″, Solar Energy, Vol. 83, No. 1, pp. 94-107.
[24] ویکی پدیا (خرداد 1395)، الگوریتم_تبرید_شبیهسازی_شدهhttps://fa.wikipedia.org/wiki/.
[25] ویکی پدیا (خرداد 1395)، روش_بهینهسازی_ازدحام_ذراتhttps://fa.wikipedia.org/wiki/.
[26] Pastohr, H., Kornandt, O., Gurlebeck, K. (2004). ″Numerical and analytical calculations of the temperature and flow field in the upwind power plant″. Int. J. Energy Res. 28, 495–510.
[27] Von Backstrom, T.W., Fluri, T.P., (2006). ″Maximum fluid power condition in solar chimney power plants – An analytical approach″. Solar Energy, Vol. 80, No. 11, pp. 1417-1423.
[28] Koonsrisuk, A., Chitsomboon, T. (2013). ″Mathematical modeling of solar chimney power plants″. Energy, Vol. 51, pp. 314-322.
[29] Petela, R. (2008). ″Influence of gravity on the exergy of substance″. Int. J. Exergy, Vol. 5, No. 1, pp. 1-17.