Thermo-hydro-dynamic investigation of journal bearing by a two dimensional model

Document Type : Mechanics article

Authors

1 M.Sc. student/ Shiraz University of Technology

2 faculty member/ Shiraz University of Technology

Abstract

Journal bearings are widely used in industrial machinery, working under heavy loading and high rotating velocity. These bearings are interfered sometimes with sever thermal damages. So the prediction of their exact working temperature is necessary. In this research a two dimensional model of pressure fed cylindrical journal bearing is presented to investigate its thermal performance. For this purpose, precise and useful boundary conditions are defined at journal-fluid-bearing interfaces. A thermo-hydro-dynamic analysis is used such that the governing equations of fluid flow and heat transfer are solved simultaneously. The lubrication fluid flow is assumed to be laminar and the unsteady condition has been assumed in the current work. The results of this two dimensional model are compared with experimental data. The heat flux distribution on the fluid-bearing interface is presented in this paper which has not been observed previously in literature. The results show that temporal changes of heat flux entering to the bearing is increasing near the fluid entrance and decreasing at farther points. Finally, the effect of various parameters such as journal rotation speed, journal material, bearing material and lubrication material are investigated on the temperature distribution and heat flux.

Keywords

Main Subjects


 
[1] Budynas, R., Nisbett  K. (2012). “Loose Leaf Version for Shigley's Mechanical Engineering Design”. McGraw-Hill: Education.
[2] Someya, T., Mitsui, J., Esaki, J., Saito, S., Kanemitsu, Y., Iwatsubo, T., Tanaka, M., Hisa, S., Fujikawa, T. (2013). “Journal-Bearing Databook”. Someya Edition, Springer Science & Business Media.
[3] Maekawa, K., Obikawa, T., Yamane, Y., Childs, T. H. C. (2003). “Mechanical Design ”.Butterworth-Heinemann.
[4] ‏ Choe, K. Y., On, S. Y., Song, S. A., Lim, J. W., You, J. I., Kim, S. S. (2015). “Study of the Endurance Performance of Composite Journal Bearings Under the Oil Cut Situation”. Composite Structures, Vol. 134, pp. 772–781.
[5] Boyce, M. P. (2011). “Gas turbine Engineering Handbook”. Elsevier.‏
[6] Kucinschi, B. R., Fillon, M., Fre, J., Pascovici, M. D. (2000). “A Transient Thermoelastohydrodynamic Study of Steadily Loaded Plain Journal Bearings Using Finite Element Method Analysis”. Journal of tribology, Vol. 122, pp. 219-226.
[7] Khonsari, M., Wang, S. (1992). “Notes on Transient THD Effects in a Llubricating Film”, Tribology      Transactions. Vol. 35, No. 1, pp. 177-183.
[8] Monmoussea, P.  u., Fillon, M., Frene, J. (1997). “Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—Comparison Between Experimental Data and Theoretical Results”. Journal of Tribology, Vol. 119, No. 3, pp. 401-407.
[9] Boncompain, R., Fillon, M., Frene, J. (1986). “Analysis of Thermal Effects in Hydrodynamic Bearings”. Journal of Tribology, Vol. 108, No. 2, pp. 219-224.
[10] Wang, X. L., Zhu, K. Q., Wen, S. Z. (2001). “Thermohydrodynamic Analysis of Journal Bearings Lubricated with Couple Stress Fluids”. Tribology International, Vol. 34, No. 5, pp. 335-343.
[11] FU, Y. L., Jun, Z. H. U. (2003). “A Transient Thermohydrodynamics Study of Plain Journal Bearings Using Newton–Raphson Method Analysis”. Chinese Journal of Aeronautics, Vol. 16, No. 4, pp. 233-240.
[12] Maneshian, B., Gandjalikhan Nassab, S. A. (2009). “Thermohydrodynamic Characteristics of Journal Bearings Running Under Turbulent Condition”. IJE Trans. A, Vol. 22, pp. 181-194.
[13] Vats, P., Sharma, B. C., Sharma, S. (2014). “Heat Transfer Through Journal Bearing: A Case Study”. IJRET: International Journal of Research in Engineering and Technology Eissn, Vol. 3, pp. 216-221.
[14] Kadam, K. R., Banwait, S. S., Laroiya, S. C. (2014). “The Influence of Modified Viscosity-Temperature Equation on Thermohydrodynamic Analysis of Plain Journal Bearing”. American Journal of Mechanical Engineering, Vol. 2, No. 6, pp. 169-177.
[15] Antunović, R.,  Halep, A.,  Bučko, M.M., Perić, S.R. (2017). “The Mathematical Model for Temperature Change of a Journal Bearing”. Tribology International, doi.org/10.2298/TSCI160713109A.
[16] Pascovici M. (1974). “Experimental Study of the Influence of Heat Transfer on the Temperature Distribution in a Lubricant Film”. Wear, Vol. 29, No. 1, pp. 59-67.
[17] Kucinschi, B., Fillon, M. (1999). “An Experimental Study of Transient Thermal Effects in a Plain Journal Bearing”.  Journal of tribology, Vol. 121, No. 2, pp. 327-332.
[18] Stachowiak, G., Batchelor, A. W. (2013). “Engineering Tribology”. Second edition, Butterworth-Heinemann.‏
[19] Bartz, W. J., Bassani, R., Briscoe, B., Czichos, H., Friedrich, K., Gane, N. (1978). “Tribology Series”. Elsevier Scientific Publishing Company.
[20] Ludema, K. C. (1996). “Friction, Wear, Lubrication: a Textbook in Tribology”. CRC press.‏
[21] Ettles, C., Heshmat, H., Brockwell, K. (1989). “Elapsed Time for the Decay of Thermal Transients in Fluid Film Bearing Assemblies”. Tribology Series, Vol. 14, pp. 229-235.
[22] Martin, F. A. (1998). “Oil Flow in Plain Steadily Loaded Journal Bearings: Realistic Predictions Using Rapid Techniques”. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 212, No. 6, pp. 413-425.
[23] Chauhan, A. (2014). “Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics”. International Journal of Research in Advent Technology, Vol. 2, No. 7, pp. 46-52.
[24] Bergman, T. L., Incropera, F. P., DeWitt, D. P., Lavine, A. S. (2011). “Fundamentals of Heat and Mass Transfer”. John Wiley & Sons.