[1] Maxwell, J. C., (1873), "A Treatise on Electricity and Magnetism", Clarendon Press, Oxford.
[2] Maxwell, J.C., (1881)"A Treatise on Electricity and Magnetism", Oxford University Press.
[3] Anoop, K., Sundararajan, T., and Das, S. K., (2009), "Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region", International Journal of Heat and Mass Transfer, 52(9-10), pp. 2189-2195.
[4] Kim, D., Kwon, Y., Cho, Y., Li, C., Cheong, S., Hwang, Y., Lee, J., Hong, D., and Moon, S., (2009), "Convective Heat Transfer Characteristics of Nanofluids under Laminar and Turbulent Flow Conditions", Current Applied Physics, 9(2, Supplement 1), pp. 119-123.
[5] Wen, D., and Ding, Y., (2004), "Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions", International Journal of Heat and Mass Transfer, 47(24), pp. 5181-5188.
[6] Hojjat, M., Etemad, S.GH., Bagheri, R.,Thibault, J., (2011), "Turbulent forced convection heat transfer of non-Newtonian nanofluids", Experimental Thermal and Fluid Science, vol. 35, pp. 1351-1356.
[7] Bianco, V., Manca, O., Nardini, S., (2011), "Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube", International Journal of Thermal Sciences, vol. 50, pp. 341-349.
[8] Moraveji, M.K., Esmaeili, E., (2012), "Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux", International Communications in Heat and Mass Transfer, vol. 39, pp. 1297–1302.
[9] Moraveji, M.K., Haddad, S.M.H., Darabi, M., (2012), "Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics", International Communications in Heat and Mass Transfer, vol. 39, pp. 995-999.
[10] Pak, B.C. and Cho, Y.I., (1998), "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles", Exp. Heat Transfer, 11(2), pp. 151-170.
[11] Chon, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S., (2005), "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement", Applied Physics Letters, 87(15).
[12] Hojjat, M., Etemad, S. Gh., Thibault, J., (2011), "Rheological characteristics of non- Newtonian nanofluids: Experimental investigation", International Communications in Heat and Mass Transfer, 38, pp. 144–148.
[13] Etemad, S. GH., Mujumdar, A.S., Huang, B., (1994), "Viscous dissipation effects in entrance region Heat transfer for a power law fluid flowing between parallel plates", International Journal of Heat and Fluid Flow, 15, pp. 122.
[14] Incropera, F.P., DEWitt, D.P., (1996), "Fundamentals of Heat and Mass Transfer", fourth ed., John Wiley & Sons, New York.
[15] Ozerinc, S., Kakac, S., and Yazicioglu, A. G., (2010), "Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review", Microfluid. Nanofluid, 8(2), pp. 145-170.
[16] Hamilton, R. L., and Crosser, O. K., (1962), "Thermal Conductivity of Heterogeneous Two-Component Systems", Industrial and Engineering Chemistry Fundamentals, 1(3), pp. 187-191.
[17] Bhattacharya, P., Saha, S. K., Yadav, A., Phelan, P. E., and Prasher, R. S., (2004), "Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids", Journal of Applied Physics, 95(11), pp. 6492-6494.
[18] Evans, W., Fish, J., and Keblinski, P., (2006), "Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity", Applied Physics Letters, 88(9), 093116-3.
[19] Bianco, V., Chiacchio, F., Manca, O., and Nardini, S., (2009), "Numerical Investigation of Nanofluids Forced Convection in Circular Tubes", Applied Thermal Engineering, 29(17-18), pp. 3632-3642.