Numerical Analysis of the Segmental Supporting System Under Earthquake Loading

Document Type : Civil Article

Authors

1 uni

2 Assistance Professor, Amirkabir University of Technology

Abstract

Today, precast concrete lining (segmental) are used as system maintenance in the majority of tunnels excavated by TBM. On the other hand, the mechanism of the joint between two segments is not known under seismic loads.
In this paper a numerical study about the effect of the earthquake on the segmental supporting system and the resultant vertical and shear forces on the contact surface between two segments is investigated. The Tehran -Karaj water conveyance tunnel (Amirkabir) was used as a case study. In this study, the UDEC software was used. At the first step, the segmental lining were simulated under no slip and full slip conditions and the normal and shear forces were studied. Finally, the effect of joint stiffness between two segments were investigated. Results showed that with increasing the interface properties, the normal and shear forces in the segmental joints increased. Also with increasing the joints stiffness, the normal and shear forces on the joints increased and the normal and shear displacement decreased. In other words, the rigidity increament of supporting system is associated with flexibility decrement of lining with respect to rock medium. So, the stresses increased and displacement decreased.

Keywords

Main Subjects


[1] Corigliano, M., Scandella, L., Lai, C.G. Paolucci, R., (2011). Seismic Analysis of Deep Tunnels in Near Fault Conditions: A case Study in Southern Italy. Bulletin Earthquake Engineerig, DOI: 10.1007/s10518-011-9249-3.
[2] Hashash, Y.M.A., Hook, J. J., Schmidt, B., Yao, J. I. C., (2001). Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): p. 247-293, DOI: 10.1016/S0886-7798(01)00051-7.
[3] Wang, J.N., Seismic Design of Tunnels: A State-of-the-Art Approach. (1993), New York, Monograph 7: Parsons Brinckerhoff Quade & Douglas, Inc.
[4] Park, K.-H., Tantayopin, K.,  Tontavanich, B.,  Owatsiriwong, (2009). A. Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: A revisit. Tunnelling and Underground Space Technology, 24(2): p. 231-235., DOI: 10.1016/j.tust.2008.07.001.
]5[ بصیرت، روح اله؛ سالاری راد، حسین؛ ملاداودی، حامد؛ (1392)، تحلیل دینامیکی سیستم نگهداری تونل­ها تحت بار زلزله توسط روش­های تحلیلی مطالعه موردی: تونل انتقال آب کرج، دهمین کنفرانس ملی تونل.
]6[ بصیرت، روح اله؛ سالاری راد، حسین؛ ملاداودی، حامد (1394)، بررسی اندرکنش سیستم نگهداری تونل­ها با محیط اطراف تحت بار زلزله، مجله علمی پژوهشی تونل و فضاهای زیرزمینی، DOI: 10.22044/tuse.2016.633.
[7] Lu, J.-F., D.-S. Jeng, and T.-L. Lee, (2007). Dynamic response of a piecewise circular tunnel embedded in a poroelastic medium. Soil Dynamics and Earthquake Engineering, 2007. 27(9): p. 875-891.
[8] Chow W. L. , T.S.K.e.a., (2009). Design of Segmental Tunnel Lining in an Eartquake Zone, in ITA-AITES World Tunnel Congress “Safe Tunnelling For The City and Environment”. Budapest
[9] CHEN Shong-loong, G.M.-w., (2011). Seismic performance of tunnel lining of side-by-side and vertically stacked twin-tunnels. J. Cent. South Univ. Technol, 18: p. 1226−1234.
[10] Do NA, Dias D, Oreste PP, Djeran-Maigre I. (2014). The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method. European Journal of Environmental and Civil Engineering, DOI: 10.1080/19648189.2013.872583
[11] Do, N. A., Dias, D., Oreste, P., and Maigre, D. I., (2014). A new numerical approach to the hyperstatic reaction method for segmental tunnel lining, International Journal of  Numerical and analytical method in Geomechanics, DOI: 10.1002/nag.2277.
[12] Hassani, R. and Basirat, R. (2016). Application of Hyperstatic Reaction Method for Designing of Tunnel Permanent Lining, Part I: 2D Numerical Modelling, Civil Engineering Journal, Vol. 2, No. 6, Pp: 244-253.
[13] Hassani, R. and Basirat, R. (2016). Application of Hyperstatic Reaction Method for Designing of Tunnel Permanent Lining, Part II: 3D Numerical Modelling, Civil Engineering Journal, Vol. 2, No. 6, Pp: 254-262.
[14] Hassani, R. Basirat, R. and Mahmoodian, N. (2016). Permanent Lining Design of Tunnels Junction using Hyperstatic Reaction Method, 3rd International conference on Architecture, structure and civil engineering, At Norway, Oslo, DOI: 10.13140/RG.2.2.36509.31207.
[15] Waal, R., (2000). Steel fibre reinforced tunnel segments for the application in shield driven tunnel linings, Delft University Press.
]16[ شرکت مهندسین مشاوره ساحل، (1388). گزارش لرزه زمین ساخت و تحلیل خطر زلزله پروژه تونل انتقال آب از سد امیرکبیر به تصفیه خانه شماره 6 تهران قطعه (K"-BR).
]17[ شرکت مهندسین مشاوره ساحل، (1388). گزارش زمین شناسی  تونل انتقال آب کرج به تهران، قطعه (K"-BR)، 1388.
[18]­ Itasca Consulting Group, (2004). UDEC version 4.1 User's manual.
[19]­ Pariseau, G., (2007). Design Analysis in Rock Mechanics. Taylor & Francis e-Library. Pp. 578.
[20] Kramer, S., (1996). Geotechnical Earthquake Engineering. Prentice-Hall, Inc. 653.
[21] www.bhrc.ac.ir/Portal/ismn. شبکه شتابنگاری زلزله ایران.
[22] Koyama, Y., (2003). Present status and technology of shield tunneling method in Japan. Tunnelling and Underground Space Technology, Vol. 18: p. pp. 145–159.