Numerical and Experimental Study of Reinforced Composite Vessels with Hoop Stiffeners under External Hydrostatic Pressure

Document Type : Mechanics article

Authors

1 shomal Defense Science and Technology Research Institute /Malek Ashtar University of technology

2 Shomal Institute. Freydunkenar, iran

3 d

Abstract

Because of the high ratio of strength to weight, composite vessels are widely used in maritime and aerospace industries. The way of composite vessels breaking under hydrostatic pressure is assignable by paying attention to the geometry and material's properties. In composite vessels, using of composite stiffeners has high complexity in manufacturing process. On the other hand, due to the low young's modulus of composite materials, usually cannot use of the materials as a stiffener. In this research, effects of using hoop stiffeners on buckling pressure of composite bodies have been studied. In this paper, mechanical manner of a composite body is studied by Finite Element Method (FEM) in two statuses (with metal stiffener and without metal stiffener). According to results, using of a metal hoop stiffener that has 3.6 percents of the composite body weight increases buckling pressure up to 25 percents. Based on results increasing the buckling pressure of composite bodies by mounting steel hoop stiffeners added lower weight to the suite from increasing of thickness of bodies. For verification of numerical results, a composite vessel of GRP (Glass Reinforced Polymer), reinforced by a hoop stiffener mounted on inner surface has been experimentally under hydrostatic pressure to the breaking step. Finally, it was broken by 16 bar pressure. The results showed that the estimated pressure of software has a little difference with the experimental estimation that represents high accuracy of modeling process in the research.

Keywords


[1]    Sabik, T.A., Kreja, I. )2011(. “Stability analysis of multilayered composite shells with cut-outs”. Archives of Civil And Mechanical Engineering, Vol. 11, No. 1, pp 195-207.

[2]    Ahmadi, A., Akbari, R. (2014). “Mechanical buckling analysis of functionally graded thick cylindrical shells using third order shear deformation theory”. Journal of Modeling in Engineering, Semnan University, Vol. 12, pp. 129–142.

[3]    Ahmadi, A., Skandari, J., Poorshahsavar, H. (2016). “Three dimensional buckling analysis of FG cylindrical panels under various thermal load conditions”. Journal of Modeling in Engineering, Semnan University, Vol. 14, pp. 39–50.

[4]    Shariatmadar, H., Abbaszadeh, H. (2009). “Modeling of Buckling Restrained Braces Subjected to Dynamic loads”. Journal of Modeling in Engineering, Semnan University, Vol. 4, pp. 1–11.

[5]    Lee, G.C., Kweon, J.H., and Choi, J.H. )2013(. “Optimization of composite sandwich cylinders for underwater vehicle application”. Composite Structures Journal, Vol. 96, pp. 691-697.
[6]    Moon, C.J., Kim, I.H., Choi, B.H., Kweon, J.H., and Choi, J.H. )2010(. “Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications”. Composite Structures Journal, Vol. 92, pp. 2241-2251.
[7]    Messager, T., Pyrz, M., Gineste, B., and Chauchot, P. )2002(. “Optimal lamination of thin underwater composite cylindrical vessels”. Composite Structures Journal, Vol. 58, pp. 529-537.
[8]    Rao, Y., Krishna, M., and Vijay, K. )2012(. “Composite Pressure Vessels”. International Journal of Research in Engineering and Technology(IJRET), Vol.1(4), December, pp. 598-618.
[9]    Blachut, J. )2004(. ‘‘Buckling and first ply failure of composite toroidal pressure hull’’. journal of Computers and Structures, Vol. 82, pp. 1981–1992.
[10] Priyadarsini, R.S., Kalyanaraman (2012). “Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression”, International Journal of Structural Stability and Dynamics, Vol. 12(4), pp. 651-676.
[11] Hur, S.H., Son, H.J., Kweon, J.H., and Choi, J.H. )2008(. ‘‘Postbuckling of composite cylinders under external hydrostatic pressure’’. journal of Composite Structures, Vol. 86, pp.114–124.
[12] Han, J.Y., Jung, H.Y., Cho, J.R., Choi, J.H., and Bae, W.B. )2008(. ‘‘Buckling analysis and test of composite shells under hydrostatic pressure’’. journal of materials processing technology, Vol. 201, pp. 742–745.
[13]  الیاسی، م.، یوسفی‌نژاد گیلده، ح و ذبیح‌پور، م. (1394). ”تعیین پاسخ مکانیکی مخازن کامپوزیتی با برش دایره‌ای تحت فشار هیدرواستاتیک خارجی یکنواخت“، نشریه مهندسی مکانیک مدرس دوره 15، شماره 9، ص‌ص360-370.
[14] Forys, P. )2015(. “Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behaviour”. Journal of Thin-Walled Structures, 95, July, pp. 231-243.
[15] Terada, A., and Shimamoto, S. )2010(. “Collapse of Ring-Stiffened Thin Cylindrical Shells under Uniform Pressure”. Journal of Zosen Kiokay, Vol. 1960(108), January, pp. 199-210.
[16] Ross, C.T.F., and Etheridge, J. )2010(. “The Buckling and Vibration of tube-stiffened under external hydrostatic pressure” Ocean Engineering Journal, Vol. 27(12), December, pp. 1373-1390.
[17] Bagheri, M., Jafari, A.A., and Sadeghifar, M. )2011(. “Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm”. Journal of Sound and Vibration, Vol. 330(2), pp. 374-384.
[18] Chenghu, L., and Zhe, W. )2015(. “Buckling of 120° stiffened composite cylindrical shell under axial compression-Experiment and Simulation”. Journal of Composite Structures, Vol. 128, March, pp. 199-206.
[19] Mahdi, E., and Sebaey, T.A. )2014(. “An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes”. Journal of Thin-Walled Structures, Vol. 76, November, pp. 8-13.
[20] Heracovich, C.T. )1998(. Mechanics of fibrous composites.John Wiley & Sons Press, USA.
[21] ASM, )2001(. ASM Handbook Volume 21, Composites .  ASM International.
[22] Harris, B. )2003(. Fatigue in composites. CRC Press, USA.
[23]   محسنی شکیب، م. (1387). ”مکانیک سازه‌های مرکب“، ویرایش دوم، انتشارات دانشگاه امام حسین.