Experimental investigation on effects of flow angle at entrance to guide vanes on exiting flow quality

Document Type : Mechanics article

Author

Khatam-Ol-Anbia(PBU) University, Iran.

Abstract

To reduce the adverse effects of cross winds on the performance of dry cooling towers in steam power plants, various methods such as installation of guide vanes cascades in wind direction have been used. This experimental investigation aims at evaluating the performance of guide vanes cascades under varying cross wind directions. For this purpose, effects of angle of flow at the entrance to the guide vanes cascade on the exiting flow quality and flow rate through the guide vanes cascade have been investigated using wind tunnel experiments. Results show that at zero degree angle of flow (with respect to the vane surface), the velocity distribution at the cascade outlet is uniform, the vanes' wake is small, and drop in the total pressure is about 2%. Moreover, with increase in the angle of flow at the entrance to guide vanes cascade (in the range 30° to 60°), flow uniformity diminishes and the drop in the total pressure increases, which is indicative of degradation in the performance of the guide vanes cascade. For example, at 60° angle of flow, the guide vanes cascade can only guide 20% of the total flow rate through the cascade. The results further show that for flow angles, at which cross wind strikes the back of the guide vanes cascade, installation of the cascade produces positive effects by changing the flow direction towards the cooling tower radiators, which improves the thermal performance of the radiators.

Keywords

Main Subjects


اردکانی، م.، رنجبر، م. (1392)، بررسی میدانی الگوی جریان ورودی به رادیاتورهای برج خنک­کن خشک هلر، مجله مهندسی مکانیک مدرس، دوره 13، شماره 11، ص ص 30-40.
[2] اردکانی، م.، انوری، آ.، رنجبر، م.، مزیدی، م. (1393)، بررسی تجربی تاثیر باد و دمای محیط بر عملکرد برج خنک کننده خشک نیروگاه منتظر قائم، سازمان پژوهشهای علمی و صنعتی ایران، گزارش طرح ارجاعی، شماره 10107896.
[3] Collar A. R. (1937), “Some Experiments with Cascades of Airfoils”. Aeronautical Research Council, Reports and Memoranda, No 1768.
[4] Salter C. (1946), “Experiments on Thin Turning Vanes”. Aeronautical Research Council, Reports and Memoranda, No 2469.
[5] Calautit, John Kaiser, et al. (2014). A Validated Design Methodology for a Closed-Loop Subsonic Wind Tunnel, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 125 pp, 180-194.
[6] Gelder T. F., Moore R. D., Sanz J. M., Mcfarland E. R.(1986), “Wind Tunnel Turning Vanes of Modern Design”, AIAA Paper-86-0044, January, Reno, Nevada.
[7] Hansen A. G., Herzing H. Z., Costello G. R. (1953), “A Visualization Study Of Secondary Flows In Cascades”, NACA TN 2947.
[8] Lindgren B., (2002), “Flow Facility Design and Experimental Studies of Wall-Bounded Turbulent Shear-Flows”, Technical Reports from Royal Institute of Technology Department of Mechanics, SE-100 44, Stockholm, Sweden.
[9] اردکانی، م.، (1388)، اصول طراحی و کاربرد تونل باد با سرعت پایین، تهران، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، ص‌ص 142-170.
[10] Moujaes S. F., Aekula S. (2009), CFD Predictions and Experimental Comparisons of Pressure Drop Effects of Turning Vanes in 90 Duct Elbows, Journal of Energy Engineering, Vol. 20, No 2.
[11] Moonen P., Blocken B, Carmeliet J. (2007), Indicators for the Evaluation of Wind Tunnel Test Section Flow Quality and Application to a Numerical Closed-Circuit Wind Tunnel, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95.9, pp. 1289-1314.
[12] گزارش داده‌های هواشناسی (2003-2014)، ایستگاه هواشناسی سینوپتیک کشاورزی کرج.
Corsiglia V. R., Olson L. E., Falarski M. D. (1984), “Aerodynamic Characteristics of the Wind Tunnel at NASA Ames Research Center”., NASA Technical Memorandum No 85946.
[14] Watkins S., Ravi S., Loxton, B. (2010). The Effect of Turbulence on the Aerodynamics of Low Reynolds Number Wings, Advanced Online Publication, Engineering Letters, Vol. 18, No. 3.