Determining the Range of Admissible Acceleration of Suspended Cable Robot

Document Type : Mechanics article

Authors

Abstract

In this article a method for determining the admissible acceleration of the end-effector is presented for the suspended cable robot in the different points of the workspace. The presented acceleration analysis is different with the dynamic work space. Indeed, the dynamic work space is defined as the set of all end-effector poses satisfying the acceleration conditions. While in the proposed analysis in this paper, the allowable acceleration range of the end-effector in each direction is obtained for any point of the workspace. To this end, after deriving the kinematic equations of the four-cable suspended robot, its dynamic equations are derived using the Lagrange method. Then, on the base of the positive tension constraint in the cables and the torque constraint of the actuators, the obtained equations are simplified to obtain the simple relation between the constrains and the end-effector acceleration in such a way that the lower and upper limit of the admissible acceleration is obtained. Some simulations are done in order to present the admissible acceleration in different point of the workspace. The simulation results show that the acceleration range is in the form of the pyramid with the rhomboid base. So the allowable range of the acceleration is changed in different direction. The results obtained in this paper can be used for online trajectory planning in high speed motion of cable robot.

Keywords

Main Subjects


[1]   Albus, J., Bostelman, R., Dagalakis, N. (1993). “The NIST ROBOCRANE”. J. of Robotic systems, Vol. 10, pp. 709-724.
[2]   Kawamura, S., Kino, H., Won, C. (2000). “High-Speed manipulation by using parallel wire-driven robots”. J. Robotica, Vol. 18, pp. 13-21.
[3]   Mayhew, D., Bachrach, B., Zev Rymer, W., Beer, R.F. (2005). “Development of the MACARM – a Novel Cable Robot for Upper Limb Neurorehabilitation”. 9th International Conference on Rehabilitation Robotics, USA.
[4]   Bosscher, P., et al. (2007). “Cable-Suspended robotic Contour crafting system”. J. Automation in construction, Vol. 17, pp. 45-55.
[5]   Williams II, R.L., Gallina P. (2001). “Planar Cable-Direct-Driven Robots, Part I: Kinematics and Statics”. Proc. 27th  Design Automation Conf. of the ASME, pp. 1-9.
[6]   Pusey, J., Fattah, A., Agrawal, S., Messina, E. (2004). “Design and Workspace Analysis of A 6-6 Cable-Suspended Parallel Robot”. J. of Mechanism and Machine Theory, Vol. 39, pp. 761-778.
[7]   Barrette, G., Gosselin, C.M. (2005). “Determination of the dynamic workspace of cable-driven planar parallel mechanisms”. ASME J. of Mechanical Design, Vol. 127, pp. 242-248.
[8]   Pham, C.B., Yeo, S.H., Yang, G., Chen, I.M. (2009). “Workspace analysis of fully restrained cable-driven manipulators”. Robotics and Autonomous Systems, Vol. 57, pp. 901-912.
[9]   میری­پور فرد، ب.، پادرگانی، ط. (1394). "تولید فضای کنترل پذیر برای یک ربات کابلی توانبخشی راه رفتن به کمک شبکه عصبی و بر اساس پارامترهای آنتروپومتری بیمار". مجله مهندسی مکانیک مدرس، شماره 3، ص­. 137-145.
[10]         قاسمی، م.ح.، جعفری چوگان، گ.، دردل، م. (1394). "تحلیل ژاکوبین، مدل­سازی دینامیک و کنترل تطبیقی ربات شش کابلی با شش درجه آزادی". مجله مهندسی مکانیک مدرس، شماره 4، ص. 391- 400.
[11] Seriani, S., Seriani, M., Gallina, P. (2015). “Workspace optimization for a planar cable-suspended direct-  driven robot”. Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 1-7.
[12] Jiang, X., Gosselin, C. (2016). “Trajectory Generation for Three- Degree-of-Freedom Cable- Suspended Parallel Robots Based on Analytical Integration of the Dynamic Equations”. J. of Mechanisms and Robotics, Vol. 8.
[13] Jiang, X., Gosselin, C. (2016). “Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot”. J. IEEE TRANSACTIONS ON ROBOTICS.
[14] Zhang, N., Shang, W., Cong, S. (2016). “Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot”. J. IEEE TRANSACTIONS ON ROBOTICS.
[15] Barbazza, L., Oscari, F., Minto, S., Rosati, G. (2017). “Trajectory planning of a suspended cable driven parallel robot with reconfigurable end effector”. Robotics and Computer-Integrated Manufacturing, Vol. 48, pp. 1-11.
[16] Kevac, L., Filipovic, M., Rakic, A. (2017). “The trajectory generation algorithm for the cable-suspended parallel robot—The CPR Trajectory Solver”. Robotics and Autonomous Systems, Vol 94, pp. 25-33.