Modeling of combined continuous and intermittent aqua-ammonia absorption cycle as solar refrigerator

Document Type : Research Paper

Author

Abstract

Using renewable energy sources as a solution for country’s stable growth needs distinct look in topics of energy production. Agriculture industry is a general industry and it is an energy consumer that can be considered as a topic in this field .Existing a based refrigerator in farm and garden makes optimized harvesting and because it is easy to use sun radiation at these places, it can be used as a source of energy for providing refrigerator’s energy. One of important needs in refrigerator, is producing continues and stable effect of refrigeration in operator while radiation release is intermittent and variable. By presentation of synthetic cycle of absorbing refrigeration, liquid refrigerant can be stored during radiation, so it can be used in other situations and as a result continues and stable effect of refrigeration can be produced. Considering collector’s parabolic shape optimized temperature, 119.6°C in generator is available. Optimized temperature of condenser, absorber and operator, in order equals 40, 43.7 and -3.2°C. By selecting 14bars for pressure in generator and condenser and 2bar pressure for operator and absorber, maximum coefficient of operation is 0.178 and rate of heat transfer in generator, condenser, absorber and operator is achieved 19.76, 7.51, 15.77 and 3.51 Kw in order.

Keywords


Erickson, C. (2005). “Solar Ice Company, Rural Milk Collection Centers ISAAC Solar Icemaker”. East and Southern African Dairy Association Conference, Kenya.
[2] Alva, L., Gonzalez, J., (2002). “Simulation of an Air cooled Solar Assisted Absorption Air conditioning System”.  Department of Mechanical Engineering, Journal Of Solar Energy Engineering, Vol. 124, pp. 276-282.
[3] Salah El’Din, M. (2006). “Solar Refrigeration and Power Generation an Overview”. International Conference on Energy and Environment.
[4] Santori, G., Vasta, S., Maggio, G., Freni, A., Polonara, F., Restuccia, G. (2006). “Modeling and Design of an Adsorption Solar Icemaker”. 61st ATI National Congress International Session Solar Heating and Cooling.
[5] Kim, D., Ferreira, C.(2008). “Solar Refrigeration Options a State of the Art Review”. International Journal Of Refrigeration, No.  31, pp. 3–15.
[6] Abdulateef, J., Sopian, K., Alghoul, M. (2008). “Optimum Design for Solar Absorption Refrigeration System and Comparison of the Performances Using Ammonia-Water, Ammonia-Lithium Nitrate and Ammonia-Sodium Thiocyanate Solutions”. International Journal of Mechanical and Materials Engineering, Vol. 3 , No. 1, pp. 17-24.
[7] Karno, A., Ajib, S. (2008). “Thermodynamic Analysis of an Absorption Refrigeration Machine with New Working Fluid For Solar Applications”. Heat Mass Transfer, No. 45, pp. 71-81.
[8] Demirocak, D. (2008). “Thermodynamic and Economic Analysis of a Solar Thermal Powered Adsorption Cooling System”. PhD Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University.
[9] Abu’Ein, S., Fayyad, S., Momani, W., Al’Bousoul, W. (2009). “Performance Analysis of Solar Powered Absorption Refrigeration System”. Heat Mass Transfer, No. 46, pp. 137-145.
[10] Crepinsek, Z. Goricanec, D., Krope, J. (2009). “Comparison of the Performances of Absorption Refrigeration Cycles”. WSEAS Transaction On Heat And Mass Transfer, Issue 3, Vol. 4, pp. 65-76.
[11] Cidade, C., Meira, S.(2010). “Design of Absorption System Water-Ammonia By Using Solar Radiation as Thermal Source”. 13th Brazilian Congress of Thermal Sciences and Engineering, Uberlandia, Brazil.
[12] Quintanar, G., Rivera, W., Best, R. (2011). “Development of a Solar Intermittent Refrigeration System for Ice Production”. Word Renewable Energy Congress, Linkӧping, Sweden.
[13] Haywood, A., Sherbeck, J., Phelan, P., Sandeep, G., Gupta, K. (2012). “Thermodynamic Feasibility of Harvesting Data Center Waste to Drive an Absorption Chiller”. Energy Conversion and Management, No. 58, pp. 26–34.
]14[ بهبهانی­نیا، س.، ع.، صیفی­کار، م. (1391). "مدل­سازی دینامیکی سییستم تبرید جذب سطحی خورشیدی". مجله علمی پژوهشی مهندسی مکانیک مدرس، دوره 12، شماره 2، 30-44.
]15[ طالبیان، هـ.، مأموریان، م.، نیازمند، ح. (1393). "تحلیل اکسرژی بستر جاذب در چیلرهای جذب سطحی". مجله علمی پژوهشی مهندسی مکانیک مدرس، دوره 14، شماره 2، 70-78.
آذرفر، م.، نیازمند، ح، طالبیان، هـ. (1393). "شبیه­سازی عددی تأثیر افزایش انتقال حرارت در بستر جاذب بر عملکرد سیستم جذب سطحی". مجله علمی پژوهشی مهندسی مکانیک مدرس، دوره 14، شماره 8، 103-117.
]17[ خستو، ب. (1393). "حرارت مرکزی، تهویه مطبوع، تبرید". انتشارات دانشگاه صنعتی امیرکبیر تهران،  496-501.
[18] Armstrong, R., Kenneth, S., Cooper, W., Patrick J. L., Hsien-Sheng, J. P., James, M. P. (1999). “HVAC Applications Handbook”. ASHRAE Handbook Committee, pp. 32.1-32.9.
[19] Kharagpur, E.E. I.I.T, India (2008). “40 Lesson on Refrigeration and Air conditioning”. Indian Institute of Technology Kharagpur, Version 1 ME, Lesson 32, pp. 608-625.