Performance modeling of nano structure graphene membrane for hydrogen separation using CFD methods

Document Type : Chemistry Article

Authors

1 chemical engineering department, Urmia university of technology, Urmia, Iran

2 chemical engineering department, Urmia university of technology, Urmia, West Azerbaijan, Iran

3 Chemical Engineering department, Urmia university of technology, Urmia, Iran

Abstract

Due to high energy consumption and pollution rate caused by fossil fuels, in the world, hydrogen has been considered by many researchers as a clean fuel. Therefore, process of hydrogen separation can also be very important in this regard. Among various methods of hydrogen separation, membrane processes have been proposed as one of the promising methods for hydrogen purification. One the other hand, among several hydrogen selective membranes, inorganic membranes have also been considered more applicable owing to their high temperature tolerance. Meanwhile, in 2014, graphene membrane was first introduced for hydrogen separation, which showed a high selectivity over other inorganic membranes. Therefore, in this research, the performance of graphene membrane is evaluated using a CFD based model and the impact of important operating parameters such as pressure, temperature, membrane surface area and membrane selectivity on its performance have been investigated. According to the model results, the graphene membrane (with a 7% error) has the best performance at 293 K, while by increasing temperature up 373 K, H2 / CO2 selectivity is decreased from 2800 to 200 and permeances of hydrogen and carbon dioxide are indicated 2*10-7 mole /m2.Pa.s and 1.5*10-10 mole / m2.Pa.s, respectively. On the other hand, increasing the pressure and surface area values also show negative effects on hydrogen selectivity of graphene membranes.

Keywords

Main Subjects


 
[1] Cong, H., Radosz, M., Towler, B. F. and Shen, Y. (2007). “Polymer–inorganic nanocomposite membranes for gas separation” Separation and Purification Technology, Vol 55, pp. 281-291.
[2] Jiang, D. E., Cooper, V. R and Dai, S. (2009). “Porous graphene as the ultimate membrane for gas     separation” Nano Letter, Vol 9, pp. 4019-4024.
[3] Koenig S. P., Wang L., Pellegrino J. and Bunch J. S. (2012). “Selective molecular sieving through porous graphene” Nature Nanotechnology, Vol 7, pp. 728-732.
[4] Kim, H. W., Yoon, H. W., Yoon, S. M., Yoo, B. M., Ahn, B. K., Cho, Y. H., Shin, H. J., Yang, H., Paik, U., Kwon, S., Choi, J.-Y. and Park, H. B. (2013). “Selective gas transport through Few-Layered graphene and graphene oxide membranes” science magazine, Vol 342, pp. 91-95.
[5] Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.-R. and Xu, N. (2015). “Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture” Angewandte Chemie International Edition, Vol 54, pp. 578–582.
[6] Huang, A., Liu, Q., Wang, N., Zhu, Y. and Caro, J. (2014). “Bicontinuous zeolitic imidazolate framework ZIF-8/ GO membrane with enhanced hydrogen selectivity” American Chemical Society, Vol 136, pp. 14686–14689.
[7]  Huang, K., Yuan, J., Shen, G., Liu, G., Jin, W. (2016). Graphene oxide membranes supported on the ceramic hollow fiber for efficient H2 recovery, Chinese journal of chemical engineering.
 
[8] Acar, C. and Dincer, I. (2014). “Comparative assessment of hydrogen production methods from renewable and non-renewable sources” Hydrogen Energy, Vol 39, pp. 1-12.
[9] Ghasemzadeh, K, Zeynali, R, Basile A,(2016), Theoretical study of hydrogen production using inorganic membrane reactors during WGS reaction, International  Journal of Hydrogen Energy, Vol 41, pp. 8696-8705.
[10] Aboudheir, A., Akande, A., Idem, R., and Dalai, A. (2006). “Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst” Hydrogen Energy, Vol 31, pp. 752-761.
[11] Adhikari, S., and Fernando, S. (2006). “Hydrogen membrane separation techniques” Industrial & Engineering Chemistry Research, Vol 45, pp. 875-881.
]12[ مویدی، م.، پورقاضی م.م، (1395)، مدلسازی ریاضی و شبکه عصبی در غشاهای مایع آمین گلیکول برای جداسازی دی اکسید کربن از هوا، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 47. ص. 60-51.
[13] یعقوبی، ن.، سید نژادیان، س.، مغرضی، ر. (1393)، سینتیک و پدیده های انتقال و جفت شدن اکسایشی متان : مدلسازی CFD در مقیاس دانه ای، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 39.ص. 141-123.
]14[ حسینی س. ح.، محصلی آ.، (1395)، مطالعه انتقال حرارت از دیواره بستر حبابی گاز-جامد به ذرات جامد درون آن به کمک دینامیک سیالات محاسباتی، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 46.ص. 136-123.
[15]   Jiang. D. E, Cooper. V. R. and Dai. S. (2009). “Porous graphene as the ultimate membrane for gas separation” Nano Letter, 9, pp. 4019–4024.
 
 
[16] Armor, J. N. (1999). “The multiple roles for catalysis in the production of H2” Applied Catalysis A: General,  Vol 176, pp. 159-176.
[17] Jiang, D. E., Cooper, V. R. and Dai, S. (2009). “Porous graphene as the ultimate membrane for gas separation” Nano Letter,Vol  9, pp. 4019–4024.
[18] Du, H., Li, J., Zhang, J., Su, G., Li, X., and Zhao, Y. (2011). “Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane” Physical Chemistry, Vol 115, pp. 23261-23266.
[19] Shan, M., Xue, Q., Jiang, N., Ling, C.,Zhang, T.,Yan, Z. and Zheng, J. (2012). “Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes” Nanoscale, Vol 4, pp. 5477–5482.
[20] Drahushuk, L. W., and Strano, M.S. (2012). “Mechanism of gas permeation through single layer graphene membranes” Langmuir, Vol 28, pp. 16671–16678.
[21] Schrier, J. (2012). “Carbon dioxide separation with a two-dimensional polymer membrane” American Chemical Society Applied Materials & Interfaces, Vol 4, pp. 3745–3752.
[22] Khakpay, A., Rahmani, F., Nouranian, S., and Scovazzo, P. (2017). “Molecular Insights on the CH4/CO2 Separation in Nanoporous Graphene and Graphene Oxide Separation Platforms: Adsorbents versus Membranes,” Physical Chemistry, Vol 121, pp. 12308-12320.
[23] Nair, R. R., Wu, H. A., Jayaram, P. N. and Geim,A. K. (2012). “Unimpeded permeation of water helium-leak-tight graphene-based membranes” Science, Vol 335, pp. 442–444.
[24] Song, H. Li, Zhang, Z, X., Huang, Y., Li, S., Mao, Y., Ploehn, H. J., Bao, Y., Yu, M. (2013). “Ultrathin, molecular sieving graphene oxide membranes for selective hydrogen separation” Science, Vol 342, pp. 95–98.
[25] Yeh C-N, Raidongia K, Shao J, Yang O-H, Huang J. (2014). On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170.
[26] Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. (2014). A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem. Vol 53, 6929–6932.
[27] Ghasemzadeh, K, Aghaeinejad-Meybodi, A, Vaezi, MJ, Gholizadeh, A, Abdi M. A., A, Babaluo, A. A, Haghighib, M and  Basile, A.(2015).Hydrogen production via silica membrane reactor during the methanol steam reforming process: experimental study RSC Advances 5 ,116, 95823-95832.