[1] R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, et al., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy. 42 (2017) 9293–9314.
[2] M.R. Arasti, N. Bagheri Moghaddam, Use of technology mapping in identification of fuel cell sub-technologies, Int. J. Hydrogen Energy. 35 (2010) 9516–9525. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.05.071.
[3] M.R. Ashraf Khorasani, S. Asghari, A. Mokmeli, M.H. Shahsamandi, B. Faghih Imani, A diagnosis method for identification of the defected cell(s) in the PEM fuel cells, Int. J. Hydrogen Energy. 35 (2010) 9269–9275. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.04.157.
[4] W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, PEM fuel cell system control: A review, Renew. Energy. (2017).
[5] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources. 114 (2003) 32–53.
[6] V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control–A review, Renew. Sustain. Energy Rev. 73 (2017) 10–18.
[7] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy & Fuels. 28 (2014) 7303–7330.
[8] C.-Y. Jung, H.-S. Shim, S.-M. Koo, S.-H. Lee, S.-C. Yi, Investigations of the temperature distribution in proton exchange membrane fuel cells, Appl. Energy. 93 (2012) 733–741. doi:http://dx.doi.org/10.1016/j.apenergy.2011.08.035.
[9] M.S. Ismail, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells, Appl. Energy. 95 (2012) 50–63. doi:http://dx.doi.org/10.1016/j.apenergy.2012.02.003.
[10] J.-H. Jang, W.-M. Yan, C.-C. Shih, Numerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells, J. Power Sources. 156 (2006) 244–252. doi:http://dx.doi.org/10.1016/j.jpowsour.2005.06.029.
[11] B. ZareNezhad, M.M. Sabzemeidani, Predicting the effect of cell geometry and fluid velocity on pem fuel cell performance by CFD simulation, J. Chem. Technol. Metall. 50 (2015) 176–182.
[12] E. Hontañón, M.J. Escudero, C. Bautista, P.L. Garcı́a-Ybarra, L. Daza, Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, J. Power Sources. 86 (2000) 363–368. doi:http://dx.doi.org/10.1016/S0378-7753(99)00478-4.
[13] F. Barbir, Chapter 7 - 7. Fuel Cell Modeling, in: F.B.T.-P.E.M.F.C. Barbir (Ed.), Academic Press, Burlington, 2005: pp. 207–248. doi:http://dx.doi.org/10.1016/B978-012078142-3/50008-2.
[14] V. Gurau, H. Liu, S. Kakaç, Two-dimensional model for proton exchange membrane fuel cells, AIChE J. 44 (1998) 2410–2422. doi:10.1002/aic.690441109.
[15] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, J. Power Sources. 165 (2007) 739–756.
[16] R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, J. Power Sources. 86 (2000) 173–180.
[17] S. Litster, G. McLean, PEM fuel cell electrodes, J. Power Sources. 130 (2004) 61–76.
[18] J.E. Dawes, N.S. Hanspal, O.A. Family, A. Turan, Three-dimensional CFD modelling of PEM fuel cells: An investigation into the effects of water flooding, Chem. Eng. Sci. 64 (2009) 2781–2794. doi:http://dx.doi.org/10.1016/j.ces.2009.01.060.
[19] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. . 138 (1991) 2334–2342. doi:10.1149/1.2085971.
[20] T. V Nguyen, R.E. White, A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells, J. Electrochem. Soc. . 140 (1993) 2178–2186. doi:10.1149/1.2220792.
[21] S. Dutta, S. Shimpalee, J.W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, Int. J. Heat Mass Transf. 44 (2001) 2029–2042.
[22] P. Futerko, I.-M. Hsing, Two-dimensional finite-element method study of the resistance of membranes in polymer electrolyte fuel cells, Electrochim. Acta. 45 (2000) 1741–1751. doi:http://dx.doi.org/10.1016/S0013-4686(99)00394-1.
[23] A. Kumar, R.G. Reddy, Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, J. Power Sources. 113 (2003) 11–18. doi:http://dx.doi.org/10.1016/S0378-7753(02)00475-5.
[24] B.R. Sivertsen, N. Djilali, CFD-based modelling of proton exchange membrane fuel cells, J. Power Sources. 141 (2005) 65–78. doi:http://dx.doi.org/10.1016/j.jpowsour.2004.08.054.
[25] L. Wang, A. Husar, T. Zhou, H. Liu, A parametric study of {PEM} fuel cell performances, Int. J. Hydrogen Energy. 28 (2003) 1263–1272. doi:http://dx.doi.org/10.1016/S0360-3199(02)00284-7.
[26] F. Hashemi, S. Rowshanzamir, M. Rezakazemi, CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields, Math. Comput. Model. 55 (2012) 1540–1557. doi:http://dx.doi.org/10.1016/j.mcm.2011.10.047.
[27] A. Iranzo, M. Muñoz, F. Rosa, J. Pino, Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation, Int. J. Hydrogen Energy. 35 (2010) 11533–11550. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.04.129.
[28] A. Iranzo, P. Boillat, F. Rosa, Validation of a three dimensional PEM fuel cell CFD model using local liquid water distributions measured with neutron imaging, Int. J. Hydrogen Energy. 39 (2014) 7089–7099. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.02.115.
[29] W.E.S. R. B. Bird and E. N. Lightfoot, John Wiley and Sons, Inc., Transport phenomena, New York (1960). 780 pages. $11.50, AIChE J. 7 (1961) 5J–6J. doi:10.1002/aic.690070245.
[30] R. O’Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd ed., 2009.
[31] P.T. Nguyen, T. Berning, N. Djilali, Computational model of a PEM fuel cell with serpentine gas flow channels, J. Power Sources. 130 (2004) 149–157. doi:http://dx.doi.org/10.1016/j.jpowsour.2003.12.027.
[32] F. Barbir, PEM fuel cells: theory and practice, Academic Press, 2012.
[33] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources. 128 (2004) 173–184. doi:http://dx.doi.org/10.1016/j.jpowsour.2003.09.072.
[34] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements, J. Power Sources. 163 (2006) 76–81.