Cost efficiency and return to scale in a two-stage network supply chain: Case study of drink companies in Iran

Document Type : Industry Article

Authors

1 Department of Mathematics, Faculty of Mathematics, Sistan and Baluchestan University, Zahedan, Iran

2 nill

Abstract

Data Envelopment Analysis (DEA) is a powerful tool to evaluate the performance of decision-making units. Some of decision- making units consist of several parts or stages that make a network of sub-processes. Data Envelopment Analysis (DEA) is used to evaluate such type of units. Two different types of inputs (variable and quasi-constant inputs) are considered based on the framework of Network Data Envelopment Analysis. One of the characteristics of the quasi-consist input is that it is considered as the output of current stage, while it will be used as the input of the next stage. The network DEA can measure the independence between the two stages. The present study investigates its cost efficiency and returns to scale (RTS) as a two-stage process. Cost efficiency can use inputs, as well as their cost and values in order to calculate the efficiency. We investigate the cost efficiency of the stages and whole process, and we also determine returns to scale. One of the advantages of the models is the reduction of computational time.
Green Supply Chain Management (GSCM) is an approach to improve environmental performance. GSCM will increase its economic and environmental performance. Hence, GSCM's assessment is very important for every company. One of the techniques which can be used to evaluate GSCM is Data Envelopment Analysis (DEA). In order to achieve our goals in this study, we use network Data Envelopment Analysis (DEA) to investigate 9 GSCM Iranian Drinking Company.

Keywords

Main Subjects


 
[1] M. Farell, 1957. “The measurement of productive efficiency.” Journal of the Royal Statistical Society 120(3), 253-281.
[2] Charnes , A., Cooper , W.W., Rhodes, E., 1978. “Measuring the efficiency of decision making units.”
European Journal of Operational Research 2 (6), 422-444.
[3] Fare, R., Grosskopf, S., 1994. “Cost and Revenue Constrained Production. ” Springer_Verlag, New York.
[4] Charnes, A., Cooper, W.W., Lewin, A.Y., Morey, R.C., Rousseau, J., 1985. “Sensitivity and stability analysis in DEA. ” Annals of Operations Research 2, 139-156.

[5] طالعی­زاده، عطاالله.، چراغی، زاهده.، 1394."قیمت­گذاری و بازار یابی در یک زنجیره تأمین دو سطحی تحت چهار رویکرد نظریه بازی­ها". مجله مدل­سازی در مهندسی، سال سیزدهم، شماره 42، 149-135.
[6] تربتی، امیر؛ ارسنجانی، محمد علی؛ فیروزشاهی، محسن. (1394). "تدوین نقشه استراتژی مدیریت زنجیره تامین با ترکیب نمودار حلقه علی و کارت امتیازی متوازن". مدل سازی در مهندسی، 13(42)، 151-165.
[7] شفیعی نیک آبادی، محسن؛ شفیعی نیک آبادی، محسن؛ عظیمی، سید علی. (1394). "پیش بینی تقاضا در زنجیره تامین با استفاده از الگوریتم های یادگیری ماشین (مورد مطالعه: زنجیره تامین شرکت ایران خودرو) ". مدل سازی در مهندسی، 13(41)، 127-136.
[8] Nemoto, J., Goto, M., 1999. “Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. ” Economics Letters 64, 51–56.
[9] Sengupta, J.k., 1995. “Dynamics of Data Envelopment Analysis, Theory of Systems Efficiency. ” Kluwer Academic Publishiers, Dordrecht, Netherlands.
[10] فلاح، حامد؛ اسکندری، حمیدرضا؛ ذگردی، سید حسام‌الدین؛ چهارسوقیگ سیدکمال. (1396). "ارائه مدل دوسطحی طراحی شبکه زنجیره تامین حلقه بسته در شرایط عدم قطعیت و رقابت بین زنجیره‌ای: حل با رویکرد تجزیه بندرز".  مدل سازی در مهندسی، 15(49)، 17-17.
[11] Sueyoshi, T., 1999. “DEA duality on returns to scale RTS in production and cost analyses: An occurrence of multiple solutions and differences between production-based and cost-based (RTS) estimates. ” Management Science 45, 1593–1608.
[12] Sueyoshi, T., Sekitani, K., / European Journal of Operational Research 161 (2005) 536–544.
[13] Cooper, W.W., Seiford, L.M., Tone, K., 2007. “Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. ” Boston: Kluwer Academic Publishers.