Design and Simulation of Second Order Sigma-Delta Modulator with Very High Precision and Low Power Consumption for Medical Applications

Document Type : Power Article

Authors

1 Engineering Faculty, Department of Electrical and Electronic Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Department of Electrical and Electronic Engineering, Azarbayjan Shahid Madani University, Tabriz, Iran

Abstract

In this paper, a second order sigma delta modulator is presented that is suitable for medical applications. Using the amplifier and comparator circuits with low power consumption, which are utilized in integrator and comparator, respectively, the power consumption of this modulator has significantly decreased; as one of essential requirements for medical devices. SNDR of the proposed modulator is obtained 102.44 dB which is equal to 16.72 bit implying a high accurate structure. System level analysis and circuit level simulation of the modulator are performed at Matlab and Cadence software, respectively. 180nm CMOS technology is utilized for simulation of the circuit. Comparing the proposed Sigma-Delta modulator with similar works reveals the superior performance of this proposed architecture considering the power consumption and accuracy. In order to accomplish a comprehensive comparison and achieve an overall insight into the performance of the circuit a figure of merit (FOM) is presented including modulator's total power consumption, effective number of bits and bandwidth.

Keywords

Main Subjects


 
]1[ معلمیان، ن، فرشیدی، ا، رضوانی وردوم، م. (1395)، تحلیل و طراحی یک چهار برابر کننده ولتاژ دقیق برای بکارگیری به‌عنوان تقویت‌کننده در مبدل‌های حوزه زمان و ولتاژ، مجله مدل‌سازی در مهندسی، دانشگاه سمنان، سال 14، شماره 45، صفحه 123 تا 131.
[2] Lee, H. Y., Hsu, C. M., Huang, S. C., Shih, Y. W., & Luo, C. H. (2005). Designing low power of sigma delta modulator for biomedical application. Biomedical Engineering: Applications, Basis and Communications, vol. 17, pp. 181-185.
]3[ عروجی، ع.ا، حیدری، س. (1389)، طراحی و شبیه‌سازی یک ترانزیستور SOI-MOSFET چند لایه‌ای برای بهبود اثرات خود گرمایی، مجله مدل‌سازی در مهندسی، دانشگاه سمنان، سال 8، شماره 23، صفحه 19 تا 23.
]4[ عروجی، ع.ا، عنبر حیدری، ا، رمضانی، ز. (1394)، ترانزیستور اثر میدان فلز-نیمه‌هادی با ناحیه بدون ناخالصی در طرف درین برای اصلاح چگالی حامل‌ها و کاربردهای توان بالا، مجله مدل‌سازی در مهندسی، دانشگاه سمنان، سال 13، شماره 43، صفحه 121 تا 127.
[5] Jasutkar, R.W., Bajaj, P.R. Deshmukh, A.Y. (2011), “GA based low power sigma delta modulator for biomedical applications”, In Recent Advances in Intelligent Computational Systems (RAICS), IEEE, September 772-776.
[6] Zhao, L., Deng, C., Chen, H., Wang, G. and Cheng, Y. (2015), “A 1-V 23-μW 88-dB DR Sigma-Delta ADC for high-accuracy and low-power applications”, In ASIC (ASICON), 11th International Conference of the IEEE, November 1-4.
[7] Hsu, C.H., Tang, K.T. (2013), “A 1V low power second-order delta-sigma modulator for biomedical signal application”, In Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, July 2008-2011.
[8] Carusone, T.C., Johns, D.A., Martin, K.W. (2012). Analog integrated circuit design. workshop on VLSI Signal Processing (1986: Los Angeles, US). No. 621.3. 049.77.
[9] Joy, J., Kandpal, K.. (2016). “Design of a 1V subthreshold comparator for bio-medical over sampled ADCs”, In Devices, Circuits and Systems (ICDCS), 3rd International Conference on March 300-305.
[10] Jose, M., Del Rıo, R. (2013). CMOS Sigma-Delta Converters, Wiley Publishing.
[11] Chandrakasan, A.P., Verma, N., Daly, D.C. (2008). Ultralow-power electronics for biomedical applications. Annual review of biomedical engineering, Vol. 10, pp. 247-274.
[12] Chiou, J.R., Chang, C.C., Lee, S.Y. (2015). “Low-power and wide-dynamic-range sigma-delta modulator for an ECG acquisition system”, In Bioelectronics and Bioinformatics (ISBB), International Symposium on October 95-98.
[13] Hsueh, C.P., Liang, M.C., Hong, J.H., Lee, S.Y. (2014), “A 1.6 uW G m-C coninuous-time sigma-delta modulator with increasing linearity technology for bio-signal acquisitions”, In Bioelectronics and Bioinformatics (ISBB), IEEE International Symposium on April 1-4.
[14] Sukumaran, A., Pavan, S. (2014). Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback. IEEE Journal of Solid-State Circuits, Vol. 49, pp. 2515-2525.
[15] Garcia, J., Rodriguez, S., Rusu, A. (2013). A Low-Power CT Incremental 3rd Order Sigma Delta ADC for Biosensor Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, pp. 25-36.
[16] De Berti, C., Malcovati, P., Crespi, L., Baschirotto, A. (2016). A 106 dB A-Weighted DR Low-Power Continuous-Time Sigma Delta Modulator for MEMS Microphones. IEEE Journal of Solid-State Circuits, Vol. 51, pp. 1607-1618.
[17] Yeknami, A.F., Alvandpour, A. (2012), “A 2.1 µW 76 dB SNDR DT-ΔΣ modulator for medical implant devices”, In NORCHIP IEEE, November 1-4.
[18] Yang, Z., Yao, L. and Lian, Y.( 2012). A 0.5-V 35-uW 85-dB DR Double-Sampled Delta Sigma Modulator for Audio Applications. IEEE Journal of Solid-State Circuits, Vol. 47, pp. 722-735.
[19] Billa, S., Sukumaran, A., Pavan, S. (2016), “A 280-μW 24-kHz-BW 98.5 dB SNDR chopped single-bit CT ΔΣM achieving
[20] Kuo, C.H., Shi, D.Y., Chang, K.S. (2010). A Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-um CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, pp.2450-2461.